首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Restoring native habitats in heavily cleared and fragmented areas such as agricultural landscapes is important to maintain and increase remaining native floral and faunal communities. Identifying priority vegetation types for restoration – as well as the parcels of land where this restoration could take place at a landscape scale – may assist in strategically protecting these biodiversity assets. To prioritise the restoration of terrestrial habitats around an ecologically and culturally significant Ramsar‐listed wetland in South Australia, we used the spatial prioritisation tool Marxan. Originally designed for prioritising the protection of reserve areas, Marxan can also be used to identify parcels of land for restoration purposes. We tested how Marxan prioritised the restoration of four distinct vegetation types around the Coorong and Lower Lakes region of South Australia using the inverse of habitat remnancy as a cost and soil type and distance to ecologically significant bird species as a conservation feature. By prioritising restoration activities around certain landscape features, such as remnant areas, our results indicate that we would be able to strategically restore parcels of native habitat that would maximise biodiversity outcomes. This study highlights the need for robust input data, such as priority vegetation types and bird species associated with these habitats, to ensure informative modelling outputs. It also suggests that other measures, such as the cost of different land types, should be included in future restoration planning. Finally, we illustrate how prioritisation tools such as Marxan can be used by natural resource managers to restore areas within fragmented agricultural landscapes.  相似文献   

3.
A multi-indicator approach assessing sensitivity to drought within different landscape types was explored within the Kiskunság National Park (Hungary) and its surrounding landscapes. The National Park preserves alkaline lakes, sand dunes, wetlands, dry steppes and forests, surrounded by a matrix of intensively used agricultural land and forests. The investigated indicators rely to soil moisture regime, changes in groundwater resources, biomass production of vegetation and wind erosion hazard. The study also estimated future drought hazard as an indicator of climate change (CC) by REMO and ALADIN regional climate model simulations applying two future time periods (2021–2050 and 2071–2100). Overlaying analysis of future CC scenarios and the multi-indicator assessment indicates increasing drought hazards over the whole area investigated, with landscapes in the northern part of the territory relatively more exposed. On the basis of the calculated indicators, the most sensitive areas were identified as being located in the areas of highest altitude and within the sandy area/alluvial plain transitional zone, which are mostly wetland and sand-dune regions. Results indicate that conservation management should especially focus on the northern part of the Kiskunság as an area most at risk of increasing drought. The outcomes of this research demonstrate the utility of a dynamic, multi-indicator landscape sensitivity approach to developing strategies to adapt on the multilayered and complex effects of CC on nature conservation practice.  相似文献   

4.
陈思淇  张玉钧 《生物多样性》2021,29(10):1411-92
乡村景观是一种人文和自然共生的复合生态系统, 为生物多样性的维持提供了支持。目前, 中国传统乡村地区生物多样性的维持正面临着农业集约化、人工林树种单一化、非农业用地急剧扩张及生态传承机制解体等复杂多样的威胁, 亟待展开深入研究。本文在总结乡村景观生物多样性相关概念及特征的基础上, 通过文献分析概括了国际乡村景观生物多样性的热点研究方向, 包括农业集约化下的生物多样性管理、区域尺度乡村景观与生物多样性的协同关系、局地尺度不同乡村景观类型的物种多样性及乡村景观中的生物文化多样性, 进一步梳理了国内在相关研究方向上的主要进展并指出研究不足。在此基础上提出未来研究展望, 包括突出生物文化多样性特征、加强多时空尺度分析、深化动态维持机制研究、推进生物多样性研究在乡村生态景观规划中的全过程应用等建议。  相似文献   

5.
Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.  相似文献   

6.
Riparian habitats in arid landscapes are recognised for their structurally diverse vegetation and diverse bird species assemblages. In the extensive semi-arid and arid centre of Australia, riparian woodland habitats are impacted by pastoral land-use which may negatively influence vegetation structure and avian species composition. However, pastoralism has promoted the establishment of artificial water bodies, so that additional riparian vegetation may occur in the landscape. In this study, we surveyed the importance of different water regimes (i.e. artificial lakes, natural waterholes, desert sites) together with their associated vegetation on avian species richness in north-western New South Wales, Australia. Our results show that bird species richness was highest at water locations, in particular at artificial lakes. Avian species richness was negatively associated with distance to water bodies, both in desert vegetation types and in the riparian vegetation type along dry creeks. Moreover, riparian habitats supported larger avian assemblages and especially those of sedentary bird species compared to the surrounding shrub-steppe landscape. This indicates that artificial water bodies may be of significance for arid zone bird species and might gain in importance with changing water availabilities due to climatic changes.  相似文献   

7.
Entomophilous flowers form the food resources for insect pollinators. Many pollinator species forage at the landscape scale and depend on floral resources that are highly variable in space and time. We present a general model approach in which the floral resources of plant communities are estimated by the floral phenology and the cover of entomophilous plant species. We applied this landscape model in a case study for three landscape sections (1.5–2.2 km2) with strongly differing land-use patterns. The comparison between a conservation area and two agricultural landscapes shows extreme differences in the quantities and in the course of floral resources.

In a stepwise simplification of the landscape model we tested the effects of input data with lower spatio-temporal resolution. Even if input data for floral phenology and vegetation have a low resolution, the landscape model allows a ranking of landscape-specific floral resource potentials. The results of the case study encourage the use of landscape models to estimate floral resource potentials. The assessment of floral resource potentials may help to define this essential landscape quality for evaluation in practical nature conservation.  相似文献   


8.
Many production landscapes are complex human-environment systems operating at various spatio-temporal scales and provide a variety of ecosystem goods and services (EGS) vital to human well-being. EGS change over space and time as a result of changing patterns of land use or changes in the composition and structure of different vegetation types. Spatio-temporal assessment of EGS can provide valuable information on the consequences of changing land use and land cover for EGS and helps to deal with this complexity. We carried out a quantitative and qualitative appraisal of selected EGS (timber production, carbon stock, provision of water, water regulation, biodiversity, and forage production) to understand how these have altered in a complex mosaic of landscape that has undergone significant change over the past 200 years.Land use and land cover types and their associated EGS were assessed and mapped using a wide range of readily available data and tools. We also evaluated the trade-offs among services associated with observed land use change. In contrast to work elsewhere, we found the recent changes in land use and land cover have an overall positive impact on various EGS due mainly to the conversion of pasture to managed plantations which are connected to the larger areas of remnant vegetation. Results also indicate that there was a high level of variation in the distribution of the EGS across the landscape. Relatively intact native vegetation provides mainly regulating services whereas the modified landscapes provides provisioning services such as timber and forage production at the cost of regulating services. Rapidly changing demand and supply of certain goods and services (e.g., timber, pulp or carbon) may also have positive and negative impact on other services. For example, increasing plantation rotation has positive impacts for biodiversity and carbon stock but reduces stream flow and water yield.  相似文献   

9.
声学手段是监测和研究生态系统生物活动规律、评价生态系统健康状况的一种新方法,声景观生态学也是景观生态学的一个新兴研究领域。声景指数是描述复杂的音频数据生态学特征的有效方法,但是,单一的声景指数并不能有效的指示物种的真实丰度。在充分挖掘音频文件时频结构特征的基础上,将遥感领域常用的面向对象图像分割技术引入语谱图分割,并提出了适合于自然界鸟类生物多样性提取的知识规则和斑块统计分析方法。研究实验在杭州植物园的不同区域布点采集音频数据,研究结果表明:鸟类的多样性与地物景观类型和人类活动影响程度密切相关,鸟类叫声的中心频率集中分布在2.5—4.5k Hz之间,最低频率分布在0.67—2.1k Hz之间,最高频率分布在7.6—8.9k Hz之间,人类活动较多的区域,鸟类活动较少且叫声更短促。此外,该方法提取的斑块面积周长比参数,可以定量的反映鸟类叫声的婉转程度。  相似文献   

10.
In Australian urban environments, revegetation and vegetation restoration are increasingly utilized conservation actions. Simple methods that help assess the utility of urban vegetation for bird species will help direct this effort for bird conservation purposes. We therefore examine whether ecological principles can be used to predict, a priori, the relative abundance of different bird species in urban vegetation. Our model proposes that a bird species will be in greater abundance where vegetation structure better reflects its foraging height requirements, and this relationship will be moderated by the landscape context of the patch. To quantify and test this model, we created an index to rank existing and revegetated urban vegetation sites in order of greatest expected abundance for each of 30 bird species. We tested this model, alongside two simpler models which consider landscape context and foraging height preferences alone, using bird abundance data from 20 woodland remnants and 20 revegetated sites in Brisbane, Australia. From these bird abundance data, we calculated the relative abundance of each species between the top‐ranking sites and lowest‐ranking sites. The model which incorporated both foraging height requirements and landscape context made predictions that were positively correlated with the data for 77% of species in remnant vegetation and 67% in revegetation. The results varied across species groups; for example, we achieved lower predictive success for canopy foraging species in the less mature revegetation sites. Overall, this model provided a reasonable level of predictive accuracy despite the diversity of factors which can influence species occurrence in urban landscapes. The model is generic and, subject to further testing, can be used to examine the effect of manipulating vegetation structure and landscape context on the abundance of different bird species in urban vegetation. This could provide a cost‐effective tool for directing urban restoration and revegetation efforts.  相似文献   

11.
Bird populations are declining in agricultural landscapes, which is ongoing for decades now. With standardized breeding bird observation data of five years within 2001–2014 from six sites in Central Germany we investigated whether trends in bird abundance are reflected by trends in species richness and whether these trends depend on the landscape context. We further analyzed whether trends and their dependencies on the landscape context differ among species groups according to their particular traits. For most of the groups (farmland birds, large birds, resident birds, short distance migrators, insectivores, granivores and birds of prey) we found declining trends in abundance. However, these trends were not reflected by species richness. In contrast to our expectations, high amounts of semi-natural habitats in the landscape did not buffer the overall negative trends. Surprisingly, bird abundance declined most in landscapes characterized by larger ranges in altitude and initially highest bird abundance in 2001. We conclude that flat landscapes in Central Germany have been utilized with high intensity already for a long time and they simply maintained their already low bird abundance. On the other hand, a recent increase in agricultural intensity in landscapes with marked altitudinal reliefs, and presumably less usability and productivity, causes the drastic declines in bird abundances. Since these strong declines are not related to habitat loss, we assume that changes in the management of agricultural fields are responsible.  相似文献   

12.
13.
An environmental revolution is urgently needed that will lead to a post-industrial symbiosis between man and nature. This can be realized only if the present unrestrained biological impoverishment and neotechnological landscape degradation are replaced by the creation of healthy and attractive landscapes. Restorationists can fulfill a vital role in this process. They must broaden their scales from biodiversity restoration in small, protected nature islands to the large-scale restoration of natural and cultural landscapes. To achieve this they must restore not only the patterns of vegetation but also the processes that create these patterns, including human land uses. Their goal should be to restore the total biological, ecological, and cultural landscape diversity, or “ecodiversity,” and its intrinsic and instrumental values of highly valuable, endangered seminatural, agricultural and rural landscapes. For this purpose it is essential to maintain and restore the dynamic flow equilibrium between biodiversity, ecological, and cultural landscape heterogeneity, as influenced by human land uses, which occur at different spatial and temporal scales and intensities. Recent advances in landscape ecology should be utilized for broader assessment of ecodiversity, including proposed indices of ecodiversity, new techniques such as Intelligent Geographical Information Systems (IGIS), and Green Books for the holistic conservation and restoration of valuable endangered landscapes. Restoration ecology can make an important contribution to an urgently needed environmental revolution. This revolution should lead to a new symbiosis between man and nature by broadening the goal of vegetation restoration to ecological and cultural landscape restoration, and thereby to total landscape ecodiversity.  相似文献   

14.
Animal community dynamics in changing landscapes are primarily driven by changes in vegetation structure and ultimately by how species respond to these changes and at which spatial scale. We consider two major components of local community dynamics, species colonisation and extinction. We hypothesise that (1) the optimal spatial extent needed to accurately predict them will differ between these two processes; (2) it will also likely differ from species to species as a result of life history traits differences related to differences in habitat selection and (3) that a species' primary habitat will determine the spatial extent at which it perceives change in vegetation structure. We used data collected over 25 yr in a changing Mediterranean landscape to study bird species local colonisation and extinction patterns in two groups of species typical from two habitats: open farmland and woodland. Vegetation changes were measured at spatial extents ranging from 0.2 to 79 ha. Local species colonisation and extinction estimates were computed using a method accounting for heterogeneity in detection probability among species. We built linear models between local species colonisation/extinction estimates and vegetation changes and examined variations in model quality with respect to the spatial extent at which vegetation changes had been measured. Models for open habitat species showed that colonisation processes operated at the landscape scale (79 ha), while extinction was more tightly linked to local habitat requirements (0.2 ha). Models for woodland species presented a low and constant model quality whatever the spatial extent considered. Our results suggest that the dynamics of the woodland species considered responded to a combination of vegetation changes at several scales and, in particular, to changes in the vertical structure of the vegetation. We highlight the need to explicitly consider spatial extent in studies of habitat selection and of habitat and population dynamics to improve our understanding of the biological consequences of land use changes and guide more effective conservation efforts.  相似文献   

15.
Aim To test whether functional homogenization of bird communities is promoted by anthropogenic landscape transformation, using specialization and habitat preference indices that account for the multidimensionality of niches. Location Catalonia, north‐east Iberian Peninsula. Methods We used data on bird species occurrences and landscape features in 2834 1‐km2 squares. Three orthogonal landscape gradients, which were taken as niche dimensions, were defined by means of principal components analysis (PCA). Specialization and habitat preference indices were created for 103 terrestrial bird species on the basis of their frequency of occurrence variation along the landscape gradients. These indices, together with species rarity, were then averaged for bird communities. We then analysed the patterns of variation of communities’ mean specialization, mean rarity and mean habitat preference values along a gradient of agricultural–forest habitat mosaics. Results Wherever we found a significant variation in the degree of specialization along the agricultural–forest gradient, agricultural habitats held more specialized bird communities than did forest ones and bore, on average, rarer species. Thus, results contradicted our initial hypothesis that humanized areas would bear more functionally homogenized bird communities. Higher α‐diversity values tended to be associated with generalist communities and with those having rarer species. Main conclusions Estimations of bird community specialization for different niche dimensions can behave differently along certain landscape gradients, and some of these differences can be explained by the variation of mean habitat preferences. Thus, we argue that a multidimensional approach to assess average niche breadth of communities can be more informative than a unidimensional measure. Our results suggest that widespread land abandonment and current secondary forest expansion throughout the Mediterranean area are promoting functional homogenization of bird communities. It would be desirable to construct larger‐scale indicators of functional homogenization in order to monitor communities’ responses to widespread landscape changes.  相似文献   

16.
The search for surrogates of changes in species richness and community structure in fragmented landscapes involves not only the selection of predictors, such as landscape metrics or environmental variables, but also the identification of the spatial scale that is most relevant to the taxa in question. However the heavily intercorrelated nature of many structural features in fragmented landscapes complicates analyses, and the wide variation in species responses prevents the identification of a general trend. In this study, we used a two-tiered hierarchical variation partitioning to identify the unique and shared effects of: 1 – changes in vegetation structure at the plot scale, patch structure (size and shape), and forest cover at the landscape scale; and 2 – variables within these scales; as predictors of species richness and species’ abundances of birds in a fragmented landscape of Atlantic Forest; with the goal of aiding to the development of biodiversity indicators. Birds were sampled with mist-nets with a constant effort of 680 net-h at each of 23 sites, which resulted in almost 2600 captures. At the community level, regression models showed that changes in plot, patch and landscape scale variables explained a large proportion of the variation in species richness, but results from variation partitioning showed that the intercorrelation among predictors was so high that the unique contribution of each was non-significant. Our results point to a relatively large unique effect of local and landscape scale variables at the community level, but we also show that results vary greatly depending on the trophic guild being analysed. At the species level, multiple scale models also presented high explanatory power, however, species responses were so varied that we could not detect a general trend. We conclude that there is no single ‘best’ scale that could function as a proxy for changes in bird communities because each species and functional guild is uniquely affected by the environment, and suggest that efforts should be focused on finding indicators that encompasses all scales and the needs of different taxa.  相似文献   

17.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

18.
Patchy landscapes driven by human decisions and/or natural forces are still a challenge to be understood and modelled. No attempt has been made up to now to describe them by a coherent framework and to formalize landscape changing rules. Overcoming this lacuna was our first objective here, and this was largely based on the notion of Rewriting Systems, also called Formal Grammars. We used complicated scenarios of agricultural dynamics to model landscapes and to write their corresponding driving rule equations. Our second objective was to illustrate the relevance of this landscape language concept for landscape modelling through various grassland managements, with the final aim to assess their respective impacts on biological conservation. For this purpose, we made the assumptions that a higher grassland appearance frequency and higher land cover connectivity are favourable to species conservation. Ecological results revealed that dairy and beef livestock production systems are more favourable to wild species than is hog farming, although in different ways. Methodological results allowed us to efficiently model and formalize these landscape dynamics. This study demonstrates the applicability of the Rewriting System framework to the modelling of agricultural landscapes and, hopefully, to other patchy landscapes. The newly defined grammar is able to explain changes that are neither necessarily local nor Markovian, and opens a way to analytical modelling of landscape dynamics.  相似文献   

19.
Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space‐borne optical (Landsat), ALOS‐PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest—agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR‐derived forest structure and Landsat‐derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.  相似文献   

20.
Farmland birds are of conservation concerns around the world. In China, conservation management has focused primarily on natural habitats, whereas little attention has been given to agricultural landscapes. Although agricultural land use is intensive in China, environmental heterogeneity can be highly variable in some regions due to variations in crop and noncrop elements within a landscape. We examined how noncrop heterogeneity, crop heterogeneity, and noncrop features (noncrop vegetation and water body such as open water) influenced species richness and abundance of all birds as well as three functional groups (woodland species, agricultural land species, and agricultural wetland species) in the paddy‐dominated landscapes of Erhai water basin situated in northwest Yunnan, China. Birds, crop, and noncrop vegetation surveys in twenty 1 km × 1 km landscape plots were conducted during the winter season (from 2014 to 2015). The results revealed that bird community compositions were best explained by amounts of noncrop vegetation and compositional heterogeneity of noncrop habitat (Shannon–Wiener index). Both variables also had a positive effect on richness and abundance of woodland species. Richness of agricultural wetland species increased with increasing areas of water bodies within the landscape plot. Richness of total species was also greater in the landscapes characterized by larger areas of water bodies, high proportion of noncrop vegetation, high compositional heterogeneity of noncrop habitat, or small field patches (high crop configurational heterogeneity). Crop compositional heterogeneity did not show significant effects neither on the whole community (all birds) nor on any of the three functional groups considered. These findings suggest that total bird diversity and some functional groups, especially woodland species, would benefit from increases in the proportion of noncrop features such as woody vegetation and water bodies as well as compositional heterogeneity of noncrop features within landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号