首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
金属结合蛋白(肽)与环境重金属生物修复   总被引:8,自引:0,他引:8  
重金属污染是全球关注的重要环境问题。针对重金属的生物修复技术 ,因其特有的优势 ,越来越受到重视 ,其中一个重要的研究领域是利用金属离子和金属结合蛋白或结合肽之间存在的强亲和能力特性进行的生物修复研究。就金属结合蛋白 (肽 )的种类、结构特点、以及金属结合的作用机理进行了总结 ,同时综述了展示或表达有不同金属结合蛋白或结合肽的微生物和植物对重金属污染进行生物修复的最新研究进展 ,对基于金属结合蛋白 (肽 )的环境重金属生物修复的进一步研究 (如肽库的构建和筛选 ,金属与蛋白 (肽 )的相互作用 )进行了讨论。  相似文献   

2.
微生物展示技术在重金属污染生物修复中的研究进展   总被引:3,自引:0,他引:3  
自然界对环境金属污染物的迁移和转化具有微秒而复杂的选择控制机理,生物修复技术以其投资少,效率高,可以原位处理低浓度有害污染物的特性而在环境治理中具有极大潜力。考虑传统的生物修复技术常常不能满足重金属治理的要求,基于重金属离子高效结合肽的微生物展示技术,有望在重金属生物修复中发挥重要作用。  相似文献   

3.
微生物展示技术在重金属污染生物修复中的研究进展   总被引:2,自引:0,他引:2  
自然界对环境金属污染物的迁移和转化具有微妙而复杂的选择控制机理,生物修复技术以其投资少、效率高、可以原位处理低浓度有害污染物的特性而在环境治理中具有极大潜力。考虑传统的生物修复技术常常不能满足重金属治理的要求,基于重金属离子高效结合肽的微生物展示技术,有望在重金属生物修复中发挥重要作用。  相似文献   

4.
人类社会工业化导致各种有毒物质被排放到环境中造成严重的污染。除了自然降解外,传统的处理方法包括化学转化、物理吸附、离子交换和电化学方法等,但存在二次污染、能源需求高、投资成本高、再生效率低、低浓度废水处理效率低等缺点。细胞表面展示技术是一种通过表面锚定蛋白在细胞表面连接功能肽的新型、高效的生物技术。与细胞内和分泌物表达系统相比,微生物表面展示的蛋白质对有机溶剂、蛋白酶、温度和pH的变化表现出更强的稳定性。通过细胞培养就可以获得固定在细胞表面的蛋白酶,避免了蛋白质纯化、浓缩等繁琐的程序。此外,细胞表面展示技术是良好的单细胞水平突变体文库高通量筛选平台。综述细胞表面展示技术在环境生物修复方面的研究进展,重点介绍该技术的应用和未来发展前景。  相似文献   

5.
利用噬菌体随机肽库展示技术,筛选出与脓毒症单核/巨噬细胞特异性结合的短肽,探索脓毒症治疗的新方法.分别以经过脂多糖(lipopolysaccharide, LPS)处理的人外周血单核细胞株(THP-1)细胞作为筛选的靶细胞,以未经LPS处理的THP-1细胞作为非特异性噬菌体吸附细胞,对噬菌体随机环七肽库进行4轮“差减"筛选,经过细胞ELISA验证阳性噬菌体克隆,对获得的阳性克隆进行DNA测序及生物信息学分析,并进一步利用免疫荧光实验,鉴定噬菌体克隆与LPS处理THP-1细胞的结合特异性.4轮筛选后,随机挑取的噬菌体克隆,测序后得到可与LPS处理的THP-1细胞特异性结合肽.对去冗余后的七肽进行Clustal W多序列比对分析和BlastP蛋白同源相似性分析,细胞免疫荧光检测确定获得的噬菌体展示七肽可与LPS处理的THP-1细胞特异性结合.噬菌体随机肽库技术为脓毒症单核/巨噬细胞表面靶位的筛选提供了高效、快捷的筛选体系,实验获得的多肽基序具有高度保守性和细胞特异性,这些多肽的生物活性将是下一步的研究内容.  相似文献   

6.
利用噬菌体随机十二肽库和亲和层析技术对重金属Cd进行亲和筛选,共获得两条Cd结合肽序列。将展示有Cd2 结合肽的噬菌体单克隆扩增物对不同重金属离子(Cd2 、Cr2 、Cu2 、Co2 、Zn2 、Ni2 )螯合的树脂进行亲和测定,结果表明Cu2 、Co2 、Zn2 、Ni2 对结合肽的亲和力高于Cd2 和Cr2 。抑菌解毒试验进一步确认了Cd2 结合肽对大肠杆菌重金属的解毒作用。显微观察可见金属结合肽与金属螯合树脂混合后分散度发生改变。  相似文献   

7.
细菌表面展示技术的应用研究进展   总被引:1,自引:0,他引:1  
细菌表面展示系统是微生物表面展示系统的一个重要分支。由于呈现载体灵活多样,可根据不同的需要呈现蛋白或多肽等特点,细菌表面展示技术近年来得到了迅猛发展,在重组细菌疫苗、抗原表位分析、全细胞催化剂、全细胞吸附剂、多肽库筛选等多个领域得到广泛应用。本文就细菌表面展示技术的应用研究作一综述。  相似文献   

8.
Ni2+高效结合肽的筛选与作用研究   总被引:3,自引:0,他引:3  
利用噬菌体随机十二肽库和金属亲和层析对重金属Ni2 进行结合肽筛选。经4轮生物淘洗、噬菌体扩增和DNA测序,获得一组多肽序列。GenBank Blast分析未发现同源序列,Clustal W多重序列比对也未找到Ni2 金属结合肽结合基序,但可能含有多聚组氨酸(His)2-5。噬菌体单克隆金属离子螯合树脂的亲和力测定和反筛、抑菌解毒试验表明:展示有金属结合肽的噬菌体不仅对Ni2 具有高亲和力,而且对其它金属离子也有作用,Cu2 、Ni2 、Co2 、Zn2 等金属离子对金属结合肽的亲和力显著高于Cd2 和Cr2 ,展示金属结合肽的噬菌体对重金属Ni2 具有一定的耐受和解毒作用。显微形态学观察也显示金属结合肽与金属螯合树脂的作用。对于了解重金属与多肽的相互作用机理以及环境重金属修复等均具有重要意义和价值。  相似文献   

9.
铁矿区重金属污染的土壤中常常存在多种耐重金属的真菌和细菌等各种微生物。由于微生物修复技术应用成本低,对土壤肥力和代谢活性负面影响小,可以避免因污染物转移而对人类健康和环境产生影响,近年来在生态修复技术领域备受关注。本文将主要探讨铁矿区重金属污染对土壤微生物代谢活性的影响及处理措施。  相似文献   

10.
根系分泌物及其在植物修复中的作用   总被引:53,自引:0,他引:53       下载免费PDF全文
 近年来环境污染日益严重,污染物在土壤植物中的行为引起了人们的高度关注。利用植物去除土壤水体等介质中污染物的植物修复是近10年来兴起的一项安全、廉价的技术,已成为污染生态学和环境生态学的研究热点,它通过植物吸收、根滤、稳定、挥发等方式清除环境中的重金属和有机污染物。国内外有关植物修复的研究报道和概述很多, 但对植物根系分泌物在植物修复中所起的作用及其机理少有述评。 本文从根系分泌物对土壤重金属和土壤有机污染物的去除作用出发,对根系分泌物的种类、数量及其在去除环境污染物中的作用机理和功能地位进行了总结,并借助研究事例对影响植物根系分泌的内外因子,如植物种类、营养胁迫、重金属胁迫、根际环境的理化性质、土壤微生物及其它环境因子进行了讨论。概言之,根系分泌物在修复污染土壤中的重金属途径是多种多样的,主要是通过调节根际pH值、与重金属形成螯合物、络合反应、沉淀、提高土壤微生物数量和活性来改变重金属在根际中的存在形态以及提高重金属的生物有效性,从而减轻它对环境的危害。在清除有机污染物时,根系分泌物中的酶可以对有机污染物进行直接降解,根系分泌物影响下的微生物也可以对有机污染物进行间接降解,且被认为是主要的降解途径。根系分泌物在植物修复过程中确实起着某些重要作用,今后应将这方面的研究重点放在某些特异性根系分泌物植物,尤其是某些重金属超富集植物资源的寻找、筛选上,通过室内实验和野外研究确定其根系分泌物对清除重金属和有机污染物的效率,证实超富集植物根系分泌物的特异性与污染物超富集的内在联系,找到污染土壤生态恢复和治理的有效方法并加以推广应用,如针对性地在被污染地大面积种植此类具特异性根分泌物植物,并辅以营林措施如修剪等,加快生物修复进程,提高修复效率。植物根系分泌物在植物修复过程中所具有的重要生态意义和可能应用前景,为污染生态学和化学生态学之间的联合研究开拓了全新的领域,今后将取得新的突破和重要进展。  相似文献   

11.
Microbial cell-surface display   总被引:27,自引:0,他引:27  
Cell-surface display allows peptides and proteins to be displayed on the surface of microbial cells by fusing them with the anchoring motifs. The protein to be displayed - the passenger protein - can be fused to an anchoring motif - the carrier protein - by N-terminal fusion, C-terminal fusion or sandwich fusion. The characteristics of carrier protein, passenger protein and host cell, and fusion method all affect the efficiency of surface display of proteins. Microbial cell-surface display has many potential applications, including live vaccine development, peptide library screening, bioconversion using whole cell biocatalyst and bioadsorption.  相似文献   

12.
The display of heterologous proteins on the microbial cell surface by means of recombinant DNA biotechnologies has emerged as a novel approach for bioremediation of contaminated sites. Both bacteria and yeasts have been investigated for this purpose. Cell surface expression of specific proteins allows the engineered microorganisms to transport, bio-accumulate and/or detoxify heavy metals as well as to degrade xenobiotics. These otherwise would not be taken up and transformed by the microbial cell. This review focuses on the application of cell surface displays for the enhanced bio-accumulation of heavy metals by metal binding proteins. It also reviews the biodegradation of xenobiotics by enzymes/proteins expressed on microbial cell surfaces.  相似文献   

13.
Surface display is a powerful technique that uses natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications, ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.  相似文献   

14.
微生物细胞表面工程是近年来发展起来的,它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白。微生物细胞表面工程可用于细胞催化剂、细胞吸附剂、活疫苗、生物传感器的开发等。微生物细胞表面工程具有广阔的应用前景,但是国内对这一领域的研究尚刚起步。在介绍了细胞表面工程的基础上,对微生物细胞表面工程技术进展进行了综述,并对该技术的发展给予展望。  相似文献   

15.
微生物细胞表面工程是近年来发展起来的,它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白。微生物细胞表面工程可用于细胞催化剂、细胞吸附剂、活疫苗、生物传感器的开发等。微生物细胞表面工程具有广阔的应用前景,但是国内对这一领域的研究刚起步。在介绍细胞表面工程的基础上,对微生物细胞表面工程技术进展进行了综述,展望了对该技术的发展。  相似文献   

16.
Cell surface display of heavy metal-binding proteins has been used to enhance the adsorption capacity of heavy metals and the engineered microbial cells can be potentially used for the bioremediation of heavy metals. In this study, the proteins PbrR, PbrR691, and PbrD from the Cupriavidus metallidurans strain CH34 were displayed on the extracellular membrane of Escherichia coli BL21 cells, with the N-domain of ice-nucleation protein as the anchor protein to achieve specific adsorption of lead ions (Pb2+) and bioremediation of lead in the soil. The localization of fusion proteins was confirmed by western blot analysis. We investigated the effects of fusion pattern, expression level, heavy metal concentration, and the presence of other heavy metal ions on the adsorption of Pb2+ by these engineered bacteria, and the optimal linker peptide (flexible linker) and inducer concentration (0.5 mM) were obtained. The engineered bacteria showed specific selectivity and strong adsorption capacity for Pb2+. The maximum Pb2+ adsorption capacity of strains displaying the three proteins (PbrR, PbrR691, and PbrD) were 942.1-, 754.3-, and 864.8-μmol/g cell dry weight, respectively, which was the highest reported to date. The engineered E. coli bacteria were also applied to Pb2+-contaminated soil and the detoxification effects were observed via the seed germination test and the growth of Nicotiana benthamiana in comparison with the control BL21, which provides the proof-of-concept for in situ remediations of Pb2+-contaminated water or soil.  相似文献   

17.
The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen. Traditionally, the generation of single-chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell-surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single-chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high-throughput screening of arrayed phage clones, and characterization of recombinant single-chain variable regions. This strategy was used to generate a panel of single-chain Abs specific for the innate immunity receptor Toll-like receptor 2. Once generated, individual single-chain variable regions were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination.  相似文献   

18.
A novel cell-surface display system was constructed in Aspergillus oryzae. Each of the five genes encoding the putative cell-wall-localized protein from the A. oryzae genome was cloned and these cell-surface anchor functions were examined by fusion to the C-terminal of the green fluorescent protein (GFP). Using the MP1 and CWP proteins as anchor proteins, GFP signals were strongly observed on the cell surface of recombinant A. oryzae. When these proteins were used as anchor proteins for cell-surface display of β-glucosidase from A. oryzae, enzyme activity was detected on the cell surface. In particular, β-glucosidase activity of recombinant A. oryzae using MP1, a putative glycosylphosphatidylinositol (GPI) anchor protein was higher than CWP. Based on these results, it was concluded that the MP1 protein can act as a GPI-anchor protein in A. oryzae, and the proposed cell-surface display system using MP1 allows for the display of heterogeneous and endogenous proteins.  相似文献   

19.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

20.
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain–heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号