首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floral scent of bat-pollinated species: West Africa vs. the New World   总被引:4,自引:0,他引:4  
Floral scent of seven West African bat-pollinated tree species, belonging to six families, was collected in situ from flowering individuals using headspace adsorption. The seven species shared neither any specific compounds nor any other discernible pattern in their floral scent composition. Most of the identified compounds are common in the floral scent of species pollinated by a variety of animals. Adansonia digitata (Bombacaceae) was the only African species found to have a substantial proportion of sulphur compounds in its floral scent. This feature contrasts with the sampled New World bat-pollinated plants, which frequently contain these compounds. The floral scent of Ceiba pentandra (Bombacaceae), native to both South America and Africa, contained no sulphur substances, contradicting a previous study in the New World that identified the major floral compounds as dimethyl disulphide and dimethyl trisulphide. We suggest that the differences in the floral scent of C. pentandra , including the absence of sulphur compounds in the African variety, result from the different selective regimes exerted by the Pteropotidae bats, in Africa, and Phyllostomidae bats, in the New World, that visit their flowers.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 161–168.  相似文献   

2.
The plants of Kadsura longipedunculata (Schisandraceae) are monoecious and possess either red or yellow male flowers (the androecium), with yellow tepals, and yellow female flowers. All flower types simultaneously produce heat and floral odours (dominated by methyl butyrate) throughout a 4–5-h nocturnal period. The flowers are pollinated only by female, pollen-eating Megommata sp. (Cecidomyiidae). Pollen is the only reward, and female flowers use the same attractants as male flowers but offer no food (pollination by deceit). Open pollinated flowers in nature varied in fruit set from 8 to 92%. Megommata (subfamily Cecidomyiinae, supertribe Cecidomyiidi), consists of six described species, which feed on Coccoidea (scale insects) and are distributed worldwide.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 523–536.  相似文献   

3.
KNUDSEN, J. T. & TOLLSTEN, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Floral scent from 15 moth-pollinated species in nine families was collected by head-space adsorption. The chemical composition was determined by coupled gas chromatography-mass spectrometry (GC-MS). The typical floral scent of moth-pollinated flowers contains some acyclic terpene alcohols, their corresponding hydrocarbons, benzenoid alcohols and esters and small amounts of some nitrogen compounds. The floral scent composition of sphingophilous flowers can be distinguished from that of phalaenophilous flowers by the presence of oxygenated sesquiterpenes. The flowers of three of the studied species had the general appearance and floral scent composition of moth-pollinated flowers, but contained no nectar reward. These species probably rely on deceptive pollination by naive visitors, which are deceived by the similarity of the flowers' morphological and scent chemistry to that of rewarding moth flowers. The finding of similar or structurally closely related floral scent compounds in both temperate and tropical species from both the Old and New worlds suggests that floral scent composition has been selected by a specific group of pollinators, moths that have similar sensory preferences. The functions of floral scent in moth-pollinated flowers are discussed in relation to an often observed over-representation of male moth visitors.  相似文献   

4.
Mimicry, as an adaptive explanation for the resemblance between organisms, is not always readily distinguishable from, inter alia , coincidence, shared ancestry, or convergent evolution. We tested the hypothesis that two rare South African orchid taxa Brownleea galpinii ssp. major (nectar-producing) and Disa cephalotes ssp. cephalotes (non-rewarding) are mimics of the nectar-producing flowers of a relatively common species, Scabiosa columbaria (Dipsacaceae), with which they always occur sympatrically. Flowers of the orchids were apparently unscented and had similar dimensions and almost identical spectral reflectance to the flowers of Scabiosa . The orchids were pollinated exclusively by long-proboscid flies (Tabanidae and Nemestrinidae) that feed mainly on nectar in Scabiosa flowers. Choice experiments showed that these flies did not discriminate between the orchids and Scabiosa when alighting on their flat-topped inflorescences. However, flies were not attracted to related orchids dissimilar to Scabiosa , or to inflorescences of B. galpinii that had been artificially reconstructed in the shape of a spike, rather than a flat-topped capitulum. A phylogenetic analysis showed traits that give the orchids a resemblance to Scabiosa , such as a flat-topped inflorescence and cream floral colouration with dark spots and short spurs, to be mostly apomorphic features, and therefore likely to be relatively recent adaptations for mimicry. We caution that the term mimic should not be applied to species whose resemblance to another species is due entirely to plesiomorphic traits that, in all likelihood, evolved prior to the ecological association.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 289–304.  相似文献   

5.
The floral traits of the inflorescences of angiosperms have coevolved to ensure and maximize pollination success. Other factors believed to influence floral architecture are external (for example, ecological) to the inflorescence. In order to understand the relationships between such factors and floral characters, 12 floral traits were measured in 54 species of Araceae. An analysis was performed to determine how these traits are linked to the following: (1) self-pollination capacity; (2) life form (evergreen versus seasonally dormant); (3) climatic conditions; and (4) type of pollinator (i.e. flies, bees, or beetles). A significant difference was found between the pollen to ovule ratio of the species able to self-pollinate and those unable to self-pollinate. Evergreen and tropical aroids produced a larger number of gametes than did seasonally dormant and temperate taxa. Finally, several floral traits, such as pollen volume and number, number of female flowers, and flower sexual type (unisexual or bisexual), showed clear differences between the three pollinator types. Variations in floral traits between the different life forms and climatic conditions are discussed with respect to pollination efficiency and properties of the growing season. The pollen to ovule ratio cannot be considered as an accurate indicator of breeding systems in aroids because of the particular pollination ecology of the family.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 29–42.  相似文献   

6.
Plants that lack floral rewards may nevertheless attract pollinators if their flowers sufficiently resemble those of rewarding plants. Flowers of the South African terrestrial orchid Disa nervosa are similar in floral dimensions and spectral reflectance to those of a sympatric nectar-producing irid ( Watsonia densiflora s.l. ). Observations showed that the orchid and Watsonia share the same pollinator, a long-proboscid tabanid fly Philoliche aethiopica . These flies visited inflorescences of both species during their foraging bouts and most (64%) observed or captured on Watsonia inflorescences carried pollinaria of the orchid on their proboscides. They probe an average of 6.3 flowers on Watsonia inflorescences, but just 1.9 flowers on the Disa inflorescences, a behaviour which would strongly promote cross-pollination in the self-compatible orchid. The orchid generally achieves high levels of pollination success, with approximately 50% of flowers receiving or exporting pollen at some sites. Pollination success was also high at one site that lacked Watsonia plants, suggesting that the orchid does not have an obligate dependence on Watsonia . Its pollination system may therefore be characterized as intermediate between generalized food deception and specific floral mimicry.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 271–278.  相似文献   

7.
Comparative floral anatomy of Pontederiaceae   总被引:1,自引:0,他引:1  
Floral anatomy is described in eight species (representing five genera) of Pontederiaceae, and floral ontogeny is described in Pontederia cordata. The results are assessed in the context of recent phylogenetic work on Pontederiaceae, which indicates that the unilocular ovary condition has been achieved by two different, non-homologous routes in Pontederiaceae: via loss of interlocular septa in Heteranthera and Hydrothrix , and via pseudomonomery in Pontederia , which has a single fertile carpel. Absence of septal nectaries has evolved more than once in Pontederiaceae, at least in Heterantha and Monochoria , probably due to a transfer of the insect reward from nectar to pollen in these taxa. The presence of an elliptical or linear unvascularized appendage on the abaxial outer stamen in Monochoria is also probably correlated with enantiostyly. In Pontederia , air spaces in the ovary wall are modified into canals, each with a ring of apparently secretory epithelial cells.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 395–408.  相似文献   

8.
The first example of pollination by fungus gnats in the eudicots is reported. The genus Mitella (Saxifragales) is characteristically produces minute, inconspicuous, mostly dull-coloured flowers with linear, sometimes pinnately branched, petals. To understand the function of these characteristic flowers, we studied the pollination biology of four Mitella species with different floral traits and different sexual expression: dioecious M. acerina , gynodioecious M. furusei var. subramosa , and hermaphroditic M. stylosa var. makinoi and M. integripetala. Flower-bagging experiments showed that wind pollination did not occur in the dioecious and gynodioecious species. Two years of observations of flower visitors at six study sites in Japan revealed that the principal pollinators of all four Mitella were specific species of fungus gnats (Mycetophilidae), which landed on the flowers with their long spiny legs settling on the petals. Characteristically, numerous pollen grains were attached to the fungus gnats in specific locations on the body. Although, on average, 1.3–2.6 fungus gnats visited each inflorescence per day, the fruit set of both bisexual and female flowers exceeded 63%. These results suggest that fungus gnats are highly efficient pollinators of Mitella spp., and that Mitella flowers are morphologically adapted to pollination by fungus gnats.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 449–460.  相似文献   

9.
This work explores the mechanism of floral shifts that may result in speciation. The model organisms chosen were the moth-pollinated pollinator-limited orchid species Platanthera bifolia and P. chlorantha . P. bifolia exhibits tongue-attachment of pollinia on pollinators, a character state that has been found previously to be ancestral. The close relative P. chlorantha exhibits the derived state of eye-attachment of pollinia on pollinators. We reasoned that differences between the species in pollination efficiency could give insights into the mechanism of floral shifts and thus cladogenesis. Four populations per species were investigated. In three populations, where the species were growing intermixed and were sharing pollinators, there was significant difference in the pollen export and import efficiency per visit-night (night with pollen export and/or import) between the two species. P. bifolia exported pollinia more efficiently but imported pollen less efficiently than did P. chlorantha . Pollen import was 1.7–4 times faster in P. chlorantha (eye-attachment) than it was in P. bifolia (tongue-attachment). P. chlorantha had a lower risk of interference between pollen import and export. An increase in fitness through greater speed and efficiency of pollen import due to an enlargement of the stigmatic surface and a reduction in the risk of sexual interference may therefore be mechanisms of the floral shift from tongue- to eye-attachment of pollinia on pollinators.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 481–495.  相似文献   

10.
Organ number per whorl was analysed in aberrant flowers of the long-day (LD) plant , Silene coeli-rosa , to test a hypothesis that organ number in a whorl takes its cue from an adjacent outer whorl and that perturbed organ number per whorl is not random but defaults to that of closely related taxa or genera of the Caryophyllaceae. When plants were grown under short-days (SD), transferred to LD and the shoot meristem excised and cultured in vitro under SD, the normal pattern of flower development was often disrupted. For example, we observed flowers which comprised floral whorls with an aberrant number of floral organs. In part, this was an effect of tissue culture; however, the over-and-above effect was the establishment of an alternative pattern of development. Our data indicate that two distinct and recurrent patterns occurred in the aberrant flowers we observed in five separate experiments. First, pairs of floral whorls were linked so that aberration in one whorl resulted in the next whorl being more aberrant than normal. Second, the number of organs in aberrant whorls was not random, but defaulted to an organ number which mimicked the flowers of closely related species of Silene or related genera in the Caryophyllaceae.  © 2002 The Linnean Society of London , Botanical Journal of the Linnean Society , 2002, 140 , 229−235.  相似文献   

11.
The study explores whether or not there are convergent patterns in floral scent composition among plant species that completely or partially rely on butterflies for pollination. Floral scent compounds were analysed from 22 flowering butterfly-pollinated plant species, representing 13 families which originate mainly from temperate North Europe but also from tropical and temperate America. Scents were collected using the dynamic headspace adsorption method and identified with coupled gas chromatography and mass spectrometry (GC-MS). In total, 217 floral scent compounds were identified, with the number per species ranging from 8 to 65. The major emerging pattern is the occurrence of certain compounds emitted exclusively by the flowers of many of the investigated species in major amounts – the benzenoids phenylacetaldehyde and 2-phenylethanol, the monoterpenes linalool and linalool oxide (furanoid) I and II and the irregular terpene oxoisophorone. It is likely that these compounds serve as a signal to attract pollinating butterflies, and may have evolved in conjunction with the sensory capabilities of butterflies as a specific group of pollinators. While there is convergence in terms of the compounds sharing this function there has been a geographical divergence in terms of their relative abundance. The predominance (in terms of both numbers and relative amount) of benzenoids in many of the scent blends of the European temperate species and of linalool and its derivatives in those of the American species constitute two discernible groups among these plants.  © 2002. The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 129–153.  相似文献   

12.
The selection of candidate plus trees of desirable phenotypes from tropical forest trees and the rapid devastation of the natural environments in which these trees are found have created the need for a more detailed knowledge of the floral and reproductive biology of tropical tree species. In this article, the organogenic processes related to unisexual flower development in tropical mahogany, Swietenia macrophylla , are described. Mahogany inflorescences at different developmental stages were evaluated using scanning electron microscopy or optical microscopy of histological sections. The unisexual flowers of S. macrophylla are usually formed in a thyrse, in which the positions of the female and male flowers are not random. Differences between male and female flowers arise late during development. Both female and male flowers can only be structurally distinguished after stage 9, where ovule primordia development is arrested in male flowers and microspore development is aborted in female flower anthers. After this stage, male and female flowers can be distinguished by the naked eye as a result of differences in the dimensions of the gynoecium. The floral characteristics of S. macrophylla (distribution of male and female flowers within the inflorescence, and the relative number of male to female flowers) have practical implications for conservation strategies of this endangered species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 529–535.  相似文献   

13.
1.  The evolution of flowering plants has undoubtedly been influenced by a pollinator's ability to learn to associate floral signals with food. Here, we address the question of 'why' flowers produce scent by examining the ways in which olfactory learning by insect pollinators could influence how floral scent emission evolves in plant populations.
2.  Being provided with a floral scent signal allows pollinators to learn to be specific in their foraging habits, which could, in turn, produce a selective advantage for plants if sexual reproduction is limited by the income of compatible gametes. Learning studies with honeybees predict that pollinator-mediated selection for floral scent production should favour signals which are distinctive and exhibit low variation within species because these signals are learned faster. Social bees quickly learn to associate scent with the presence of nectar, and their ability to do this is generally faster and more reliable than their ability to learn visual cues.
3.  Pollinators rely on floral scent as a means of distinguishing honestly signalling flowers from deceptive ones. Furthermore, a pollinator's sensitivity to differences in nectar rewards can bias the way that it responds to floral scent. This mechanism may select for flowers that provide olfactory signals as an honest indicator of the presence of nectar or which select against the production of a detectable scent signal when no nectar is present.
4.  We expect that an important yet commonly overlooked function of floral scent is an improvement in short-term pollinator specificity which provides an advantage to both pollinator and plant over the use of a visual signal alone. This, in turn, impacts the evolution of plant mating systems via its influence on the species-specific patterns of floral visitation by pollinators.  相似文献   

14.
During the past several decades, the pollination biology of Old World plant species pollinated by flying foxes and of New World plants pollinated by highly specialized nectar-feeding glossophagine bats has been studied in detail. However, little is known about Neotropical plants that are pollinated by less specialized phyllostomid bats. Therefore, we studied the pollination biology of Parkia pendula , a tree pollinated by Phyllostomus . Flowers of P. pendula are arranged in capitula, and a capitulum is composed of approximately 800 hermaphrodite flowers and 260 sterile flowers. The sterile flowers produced a total of 7.4 ml nectar per night, with a sugar concentration of 14.95%, and proline as the dominant amino acid. Nectar production is highest at dusk and ends at 03:00 h. The floral scent is dominated by monoterpenoids (97.9%), with ( E )-β-ocimene being the dominant (84.0%) compound. No sulfur compounds were detected. The capitula are heavily visited by four species of phyllostomid bats, of which Phyllostomus discolor is the most abundant (98.9%). Nectar production per capitulum is within the reported range of nectar produced by this pantropical genus (5.0–8.0 ml). This genus-wide range seems to be optimal for attracting non-specialized nectar-feeding bats and forces them to visit capitula of several trees to satisfy their dietary needs, thus increasing the probability of cross-pollination for this plant.  相似文献   

15.
Diversity and distribution of floral scent   总被引:20,自引:0,他引:20  
A list of 1719 chemical compounds identified from headspace samples of floral scent is presented. The list has been compiled from some 270 published papers, including analyses of 991 species of flowering plants and a few gymnosperms, a sample including seed plants from 90 families and 38 orders. The compounds belong to seven major compound classes, of which the aliphatics, the benzenoids and phenylpropanoids, and, among the terpenes, the mono- and sesquiterpenes, occur in most orders of seeds plants. C5-branched compounds, irregular terpenes, nitrogen-containing compounds, and a class of miscellaneous cyclic compounds have been recorded in about two-thirds of the orders. Sulfur-containing compounds occur in a third of the orders, whereas diterpenes have been reported from three orders only. The most common single compounds in floral scent are the monoterpenes limonene, (E)-β-ocimene, myrcene, linalool, α- and β-pinene, and the benzenoids benzaldehyde, methyl 2-hydroxybenzoate (methyl salicylate), benzyl alcohol, and 2-phenyl ethanol, which occur in 54–71% of the families investigated so far. The sesquiterpene caryophyllene and the irregular terpene 6-methyl-5-hepten-2-one are also common and occur in more than 50% of the families. Orchidaceae are by far the best investigated family, followed by several families known to have many species with strongly scented flowers, such as Araceae, Arecaceae, Magnoliaceae, and Rosaceae. However, the majority of angiosperm families are still poorly investigated. Relationships between floral scent and pollination, chemistry, evolution, and phylogeny are briefly discussed. It is concluded that floral scent chemistry is of little use for phylogenetic estimates above the genus level, whereas the distribution and combinations of floral scent compounds at species and subspecific levels is a promising field of investigation for the understanding of adaptations and evolutionary processes in angiosperms.  相似文献   

16.
Flowers or inflorescences often deploy various signals, including visual, olfactory, and gustatory cues, that can be detected by their pollinators. In many plants, these cues and their functions are poorly understood. Deciphering the interactions between floral cues and pollinators is crucial for analyzing the reproductive success of flowering plants. In this study, we examined the composition of the fetid floral scents produced by several Stemona species, including nine S. tuberosa populations from across China, using dynamic headspace adsorption, gas chromatography, and mass spectrometry techniques. We compared variations in floral phenotype, including floral longevity, nectar rewards, pollinator behavior, and flower length and color among the Stemona species. Of the 54 scent compounds identified, the major compounds include fetid dimethyl disulfide, dimethyl trisulfide, 1‐pyrroline, butyric acid, p‐cresol, isoamyl alcohol, and indole. We detected striking differentiation in floral scent at both the species and population level, and even within a population of plants with different colored flowers. Floral characteristics related to sapromyophily and deceptive pollination, including flower color mimicking livor mortis and a lack of nectar, were found in five Stemona species, indicating that Stemona is a typical sapromyophilous taxon. Species of this monocot genus might employ evolutionary tactics to exploit saprophilous flies for pollination.  相似文献   

17.
When a pollination vector is required, any mechanism that contributes to floral visitation will potentially benefit the reproductive fitness of a plant. We studied the effect of floral colour change in the desert perennial Alkanna orientalis on the foraging behaviour of the solitary bee Anthophora pauperata . Flowers changed colour over time from bright yellow (with moderate nectar reward) to pale yellow/white (with significantly lower nectar reward). Bee visitation was non-random with respect to colour phase availability within the flower population and was biased towards the more rewarding flowers. At plants where the availability of colour phases had been manipulated experimentally to produce 'bright' or 'pale' plants, bees visited significantly more flowers (and for longer periods) on the bright plants. The change of flower colour was not simply age-related; we observed variation in the temporal course of colour change and our data suggest that visitation, leading to deposition of cross-pollen, can accelerate the process. In subpopulations with limited pollinators, Alkanna can influence bees by using their colour-related foraging preferences to alter visitation patterns.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 427–435.  相似文献   

18.
Zoophilous flowers often transmit olfactory signals to attract pollinators. In plants with unisexual flowers, such signals are usually similar between the sexes because attraction of the same animal to both male and female flowers is essential for conspecific pollen transfer. Here, we present a remarkable example of sexual dimorphism in floral signal observed in reproductively highly specialized clades of the tribe Phyllantheae (Phyllanthaceae). These plants are pollinated by species-specific, seed-parasitic Epicephala moths (Gracillariidae) that actively collect pollen from male flowers and pollinate the female flowers in which they oviposit; by doing so, they ensure seeds for their offspring. We found that Epicephala-pollinated Phyllanthaceae plants consistently exhibit major qualitative differences in scent between male and female flowers, often involving compounds derived from different biosynthetic pathways. In a choice test, mated female Epicephala moths preferred the scent of male flowers over that of female flowers, suggesting that male floral scent elicits pollen-collecting behaviour. Epicephala pollination evolved multiple times in Phyllantheae, at least thrice accompanied by transition from sexual monomorphism to dimorphism in floral scent. This is the first example in which sexually dimorphic floral scent has evolved to signal an alternative reward provided by each sex, provoking the pollinator''s legitimate altruistic behaviour.  相似文献   

19.
Cyclocephline scarabs and their host plants are documented as highly specialized plant–pollinator associations, with various fine‐tuned adaptations. We studied the association between Philodendron adamantinum, a species endemic to the Espinhaço Range in Minas Gerais, South‐East Brazil, and its exclusive pollinators. We focused on the pollination mechanism and reproductive success of P. adamantinum, analysed its floral scent composition, and performed field bioassays to verify the scent‐mediated attraction of pollinators. The reproductive success of P. adamantinum depends on the presence of Erioscelis emarginata (Scarabaeidae, Cyclocephalini), its sole pollinator. At dusk, the inflorescences heat up to 18 °C above the surrounding ambient air temperature and give off a strong sweet odour, from which 32 volatile compounds were isolated. Dihydro‐β‐ionone, the major constituent in the floral scent bouquet, lures individuals of E. emarginata when applied to scented artificial decoys, either alone or blended with methyl jasmonate. We attribute the low fruit set of P. adamantinum at our study sites to pollinator limitation of small and isolated populations and geitonogamic pollen flow of vegetatively generated clonal plant groups. The interaction between P. adamantinum and E. emarginata shows common traits typical of the known plant–pollinator associations involving cyclocephaline scarabs: the asymmetrical dependence of plants on their pollinators, and the scent‐mediated interaction between flowers and beetles. In addition to updating the current catalogue of active compounds of cantharophilous pollination systems, further experimental studies should elucidate the role of the specific chemical compounds that attract pollinators along different time and biogeographic scales. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 679–691.  相似文献   

20.
Nicotiana glauca , a hummingbird pollinated plant, exhibits geographical variation in several floral traits. We examined whether geographical differentiation occurred for different flower characters and if this differentiation could be explained, at least in part, by the existence or abundance of different hummingbird species in the respective pollinator assemblages. The comparison between five populations showed significant variation in six floral traits and two female fitness measures. The traits that better discriminated between populations were corolla length and corolla width. There were metric correlations between corolla length and style length in all populations studied and, in four of the five populations, both corolla length and width were also correlated. Among plants in each population, seed weight was correlated positively and significantly with style exertion, suggesting that fruit quality is dependent on the degree of cross pollination. Assemblages of hummingbirds differed between populations in species composition, visitation frequencies, and bill length. Linear regression involving bill length of the more frequent hummingbird pollinators and corolla length yielded positive and significant relationships. Thus, there appears to be an adjustment between pollinators and flowers traits that have high incidence in the among population variation.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 657–667.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号