首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wang  Wenwen  Pataki  Diane E. 《Plant and Soil》2012,358(1-2):323-335

Aims

Plant litter decomposition plays an important role in the storage of soil organic matter in terrestrial ecosystems. Conversion of native vegetation to agricultural lands and subsequent land abandonment can lead to shifts in canopy structure, and consequently influence decomposition dynamics by alterations in soil temperature and moisture conditions, solar radiation exposure, and soil erosion patterns. This study was conducted to assess which parameters were more closely related to short-term decomposition dynamics of two predominant Mediterranean leaf litter types.

Methods

Using the litterbag technique, we incubated leaf litter of Pinus halepensis and Rosmarinus officinalis in two Mediterranean land-uses with different degree of vegetation cover (open forest, abandoned agricultural field).

Results

Fresh local litter lost between 20 and 55% of its initial mass throughout the 20-month incubation period. Rosemary litter decomposed faster than pine litter, showing net N immobilization in the early stages of decomposition, in contrast to the net N release exhibited by pine litter. Parameters related to litter quality (N content or C:N) or land-use/site conditions (ash content, an index of soil deposition on litter) were found to explain the cross-site variability in mass loss rates for rosemary and Aleppo pine litter, respectively.

Conclusions

The results from this study suggest that decomposition drivers may differ depending on litter type in this Mediterranean ecosystem. While rosemary litter was degraded mainly by microbial activity, decomposition of pine litter was likely driven primarily by abiotic processes like soil erosion.  相似文献   

2.

Background and aims

Liming is considered normal agricultural practise for remediating soil acidity and improving crop productivity; however recommended lime applications can reduce yield. We tested the hypothesis that elevated xylem sap Ca2+ limited gas exchange of Phaseolus vulgaris L. and Pisum sativum L. plants that exhibited reduced shoot biomass and leaf area when limed.

Methods

We used Scholander and whole-plant pressure chamber techniques to collect root and leaf xylem sap, a calcium-specific ion-selective electrode to measure xylem sap Ca2+, infra-red gas analysis to measure gas exchange of limed and unlimed (control) plants, and a detached leaf transpiration bioassay to determine stomatal sensitivity to Ca2+.

Results

Liming reduced shoot biomass, leaf area and leaf gas exchange in both species. Root xylem sap Ca2+ concentration was only increased in P. vulgaris and not in P. sativum. Detached leaves of both species required 5 mM Ca2+ supplied to via the transpiration stream to induce stomatal closure, however, maximum in vivo xylem sap Ca2+ concentrations of limed plants was only 1.7 mM and thus not high enough to influence stomata.

Conclusion

We conclude that an alternative xylem-borne antitranspirant other than Ca2+ decreases gas exchange of limed plants.  相似文献   

3.

Background and aims

We determined the relationship between site N supply and decomposition rates with respect to controls exerted by environment, litter chemistry, and fungal colonization.

Methods

Two reciprocal transplant decomposition experiments were established, one in each of two long-term experiments in oak woodlands in Minnesota, USA: a fire frequency/vegetation gradient, along which soil N availability varies markedly, and a long-term N fertilization experiment. Both experiments used native Quercus ellipsoidalis E.J. Hill and Andropogon gerardii Vitman leaf litter and either root litter or wooden dowels.

Results

Leaf litter decay rates generally increased with soil N availability in both experiments while belowground litter decayed more slowly with increasing soil N. Litter chemistry differed among litter types, and these differences had significant effects on belowground (but not aboveground) decay rates and on aboveground litter N dynamics during decomposition. Fungal colonization of detritus was positively correlated with soil fertility and decay rates.

Conclusions

Higher soil fertility associated with low fire frequency was associated with greater leaf litter production, higher rates of fungal colonization of detritus, more rapid leaf litter decomposition rates, and greater N release in the root litter, all of which likely enhance soil fertility. During decomposition, both greater mass loss and litter N release provide mechanisms through which the plant and decomposer communities provide positive feedbacks to soil fertility as ultimately driven by decreasing fire frequency in N-limited soils and vice versa.  相似文献   

4.

Aims

Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. The working hypothesis is that salt tolerance shapes the presence of these species in their specific habitats.

Methods

Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development.

Results

Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species’ salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution.

Conclusions

G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stress.  相似文献   

5.

Background and aims

Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes.

Methods

We quantified 15N recovery rates in plant and soil N pools by adding 15N-labelled leaf and/or root litter under controlled conditions.

Results

Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced 15N recovery from litter in seedlings thereby affecting root N nutrition. 15N accumulated in seedlings in different sinks depending on litter type.

Conclusions

Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.  相似文献   

6.

Aims

We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.

Methods

Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9?months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO 3 ? -N and NH 4 + -N) was assessed every 2?months.

Results

Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.

Conclusion

Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.  相似文献   

7.
8.

Background & Aims

Oak seedling establishment is difficult and may be partly explained by litter-mediated interactions with neighbors. Litter effects can be physical or chemical and result in positive or negative feedback effects for seedlings. Mediterranean species leaves contain high levels of secondary metabolites which suggest that negative litter effects could be important.

Methods

Seedlings of Quercus ilex and Quercus pubescens were grown for two years in pots with natural soil and litter inputs from 6 Mediterranean woody species, artificial litter (only physical effect) or bare soil.

Results

Litter types had highly different mass loss (41–80%), which correlated with soil organic C, total N and microbial activity. Litter of Q. pubescens increased soil humidity and oak seedlings aerial biomass. Litters of Cotinus coggygria and Rosmarinus officinalis, containing high quantities of phenolics and terpenes respectively, decomposed fast and led to specific soil microbial catabolic profiles but did not influence oak seedling growth, chemistry or mycorrhization rates.

Conclusions

Physical litter effects through improved soil humidity seem to be predominant for oak seedling development. Despite high litter phenolics content, we detected no chemical effects on oak seedlings. Litter traits conferring a higher ability to retain soil moisture in dry periods deserve further attention as they may be critical to explain plant-soil feedbacks in Mediterranean ecosystems.
  相似文献   

9.
The interplay between the invasion of alien plant species and re-colonization of native plant species is important for conservation. Sandy coastal plains (called restinga in Brazil) were used as a model system to explore the abiotic barriers that potentially limit the initial establishment of alien and native woody plants in invaded and non-invaded areas. The study tested the influence of light availability, soil type and litter layer on recruitment of a wind-dispersed alien tree (Casuarina equisetifolia) and two bird-dispersed native shrubs under a Casuarina stand and in the preserved restinga. The effect of soil type and the physical and allelopathic effects of Casuarina litter on seedling emergence of the three species were also evaluated under greenhouse conditions. Low dispersal associated with low seedling emergence and zero survival of young plants (mainly due to microhabitat conditions) apparently prevents the spread of Casuarina in the preserved restinga. The main cause of low recruitment of native species in the Casuarina stand was the physical barrier of the litter. However, if seeds overcome this physical barrier, the presence of litter improves seedling emergence and survival of young plants, mainly because the litter increases soil moisture. Sowing seeds below litter and planting young plants of native shrubs on litter can improve the re-colonization of native plants in invaded areas. In conclusion, Casuarina invasion on sandy coastal plains is strongly limited by abiotic barriers, but anthropogenic disturbances are altering the key processes that naturally make the restinga resistant to invasion.  相似文献   

10.

Background and aims

The knowledge of individual tree species impacts on soil respiration based on rigorous experimental designs is limited, but is crucial to help guide selection of species for reforestation and carbon (C) management purposes.

Methods

We assessed monthly soil respiration and its components, litterfall input, fine root production and mortality under 19-year-old native coniferous Cunninghamia lanceolata and broadleaved Mytilaria laosensis plantations in sub-tropical China.

Results

Total soil respiration from October 2011 to March 2013 was significantly lower under the C. lanceolata than the M. laosensis plantation. The difference in respiration rates derived from fine roots and the litter layer explained much of the variation of total soil respiration between the two tree species. We used an exponential equation and base temperature (10 °C) to normalize soil respiration rate and its components (R10) and determined the correlation between R10 and soil moisture. Although soil moisture had a positive relationship with R10 derived from roots or litter under both C. lanceolata and M. laosensis forests, these positive correlations were masked by negative relationships between soil moisture and R10 derived from root-free soil, which resulted in a neutral correlation between total R10 and soil moisture under C. lanceolata forests. Monthly litterfall input was associated with variation in concurrent total soil respiration rate under the M. laosensis plantation and respiration rate lagging 3 months behind under the C. lanceolata plantation, which may suggest that litterfall input from M. laosensis can more rapidly produce C substrates for microbial respiration than litterfall from C. lanceolata.

Conclusions

This study highlighted that tree species-induced variation in the quality and quantity of fine roots and litterfall can impact not only the soil respiration rate but also the seasonal variation model of forest soil respiration.  相似文献   

11.

Background and aims

Nitrogen (N) deposition usually alters plant community structure and reduces plant biodiversity in grasslands. Seedling recruitment is essential for maintaining species richness and determines plant community composition. Arbuscular mycorrhizal fungi (AMF) are widespread symbiotic fungi and could facilitate seedling establishment. Here we conducted an experiment to address whether the influence of AMF on seedling recruitment depends on N addition and plant species.

Methods

Leymus chinensis were cultivated for 5 months in the microcosms that were inoculated with or without AMF at five N addition rates. Seeds of three main species (two C3 grasses and one non-N2-fixing forb) of the Eurasian steppe were sown to the 5-month-old microcosms. Seedling establishment was estimated by shoot biomass, N and P contents 7 weeks after seedling germination.

Results

AMF promoted seedlings recruitment of two C3 grasses at addition rates above 0.5 g N m?2. In contrast, seedling recruitment of the non-N2-fixing forb was increased by AMF at addition rates below 0.5 g N m?2 but was decreased above 2.5 g N m?2.

Conclusions

These results partly explain why N addition favored the dominance of grasses over forbs in perennial grassland communities. Our study indicates that AMF have the potential to influence plant community composition by mediating revegetation in the face of N deposition.  相似文献   

12.

Aims

Feather mosses form a thick ground layer in boreal forests that can intercept incoming litter fall. This interception may influence the decomposition of incoming litter but this has been little explored. We investigated how the moss layer influences decomposition of intercepted litter along a 362-year fire driven forest chronosequence in northern Sweden across which soil fertility declines.

Methods

We placed leaf litter from three plant species into plots in which mosses and dwarf shrubs were either experimentally removed or left intact, at each of ten stands across the chronosequence. After one year we measured litter mass loss, and litter nitrogen and phosphorous.

Results

Litter decomposed consistently faster, and had higher nitrogen and phosphorus, in the presence of mosses and at greater depth in the moss layer. Despite an increase in moss depth across the chronosequence we did not find consistent increases in effects of moss removal on litter decomposition or on litter N or P.

Conclusions

Our findings identify a clear role of the moss layer in boreal forests in promoting the decomposition of intercepted leaf litter, and highlight that this role is relatively consistent across chronosequence stages that vary greatly in productivity and moss depth.  相似文献   

13.

Background and Aims

Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field.

Methods

A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory.

Key Results

Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy.

Conclusions

The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.  相似文献   

14.

Aims

Hemiparasitic plants often produce nutrient-rich litter with high decomposition rates, and thus can enhance nutrient availability. When plant species have differential affinities for this nutrient source, hemiparasitic litter might influence species composition in addition to the parasitic suppression of host species. We expected that species adapted to fertile habitats derive a higher proportion of nutrients from the hemiparasitic litter compared to other species.

Methods

15N-labeled litter of Rhinanthus angustifolius and Pedicularis sylvatica was added to experimental field plots and adjacent litter bags. We examined N release from the litter, N uptake by the vegetation 2, 4 and 12 months after litter addition and differences in the proportion of N taken up from the litter (NL) between co-occurring species.

Results

The percentage of N in shoots of co-occurring plant species that is derived from the added hemiparasitic litter (NL) strongly differed between the species (0.1–6.2 %). After exclusion of species with an alternative N source (legumes as well as ectomycorrhizal and ericoid mycorrhizal species), NL was positively related (p?<?0.001) with specific leaf area (SLA) and at Pedicularis sites with leaf N concentration (LNC) and leaf phosphorus concentration (LPC) (p?<?0.05), i.e. leaf traits associated with a fast-growth strategy and adaptation to high-nutrient environments.

Conclusions

Our results suggest that nutrient release from hemiparasitic litter favors plant species with a fast-growth strategy adapted to high-nutrient environments compared to species with a slow-growth strategy. Whether continued hemiparasitic litter inputs are able to change species composition in the long term requires further research.  相似文献   

15.

Aim

Ground penetrating radar (GPR), a nondestructive tool that can detect coarse tree roots, has not yet become a mature technology for use in forests. In this study, we asked two questions concerning this technology: (i) Does the leaf litter layer influence root detection and major indices based on the time interval between zero crossings (T) and the amplitude area (A)? (ii) Can GPR images discriminate roots of different plant species?

Methods

Roots buried in a sandy bed, which was covered with different thicknesses of leaf litter, were scanned using a 900 MHz GPR antenna. Roots of four plant species in the bed were also scanned.

Results

Leaf litter decreased root reflections without distorting the shape of the hyperbolas in the radar profile. A values decreased with increasing litter thickness, whereas T was independent of litter thickness. For all species combined, GPR indices were significantly correlated with root diameter.

Conclusions

Leaf litter dramatically decreased root detection, but the influence of the litter could be ignored when the sum of T for all reflection waveforms (ΣT) is adopted to estimate root diameter. To use A values to detect roots, litter should be removed or equalized in thickness. Radar profiles could not reliably differentiate among roots belonging to plants of different species.
  相似文献   

16.

Aims

Decomposition of leaf litterfall plays a major role for nitrogen (N) dynamics in soils. However, little is known as to which extent beech leaf litter contributes to N turnover and nitrous oxide (N2O) emissions within one decade after litterfall.

Methods

In 1997, we exchanged recently fallen leaf litter by 15N-labelled litter in a beech stand (Fagus sylvatica) at the Solling, Germany. Measurements were conducted 2–3 and 10–11 years after litter exchange.

Results

Two years after litter exchange, 92 % of added 15N was recovered in the surface 10 cm of the soil. The labelled N was primarily found in the upper part of the F layer of the moder type humus. Eleven years after litter exchange, 73 % of the added 15N was lost and the remaining 27 % was mainly recovered in the lower part of the F layer indicating N sequestration. The remaining leaf litter N was subject to measurable N mineralisation (2–3 % of litter N) and N2O production (0.02 %). Between 0.3 % (eleventh year) and 0.6 % (second year) of total annual N2O emissions were attributed to beech leaf litter of a single year.

Conclusions

Most of the annual N2O emissions (1.33–1.54 kg N ha?1 yr?1) were probably derived from older soil N pools.  相似文献   

17.

Key message

Structure–activity relationship studies of strigolactones and Striga gesnerioides seed germination revealed strict structural requirements for germination induction and a new function of the plant hormones as germination inhibitors.

Abstract

Stereoisomers of the naturally occurring strigolactones, strigol, sorgolactone, orobanchol, sorgomol and 5-deoxystrigol, 36 in total, were prepared and screened for the ability to induce and/or inhibit the germination of Striga hermonthica and Striga gesnerioides seeds collected from mature plants that parasitized on sorghum and cowpea, respectively. All of the compounds induced S. hermonthica seed germination, albeit displayed differential activities. On the other hand, only a limited number of the compounds induced significant germination in S. gesnerioides, thus indicating strict structural requirements. Strigolactones inducing high germination in S. gesnerioides induced low germination in S. hermonthica. Strigolactones with the same configuration at C3a, C8b and C2′ as that in 5-deoxystrigol (9a) induced high germination of S. hermonthica seeds, but most of them inhibited the germination of S. gesnerioides. The differential response of S. gesnerioides to strigolactones may play an important role in the survival of the species. However, the compounds could be used as means of control if mixed cropping of cowpea and sorghum is adopted.  相似文献   

18.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

19.

Aims

The aim of this study was to examine the effect of plant species differing in functional and phylogenetic traits on the decomposition processes of leaf litter in a grassland of Japanese pampas grass (Miscanthus sinensis) and adjacent forests of Japanese red pine (Pinus densiflora) and Japanese oak (Quercus crispula), representing sequential stages of secondary succession.

Methods

The litterbag experiments were carried out for 3 years in a temperate region of central Japan.

Results

The decomposition constant (Olson’s k) was 0.49, 0.39, and 0.56/year for grass, pine, and oak, respectively. Nitrogen mass decreased in grass leaf litter during decomposition, whereas the absolute amount of nitrogen increased in leaf litter of pine and oak during the first year. Holocellulose in grass leaf litter decomposed selectively over acid-unhydrolyzable residues more markedly than in leaf litter of pine and oak. 13C nuclear magnetic resonance analysis also revealed a decrease in the relative area of O-alkyl-C in grass.

Conclusions

The different decomposition among the three litter species implied that the secondary succession from grassland to pine forest and from pine to oak forests could decrease and increase, respectively, the rate of accumulation and turnover of organic materials and N in soils.  相似文献   

20.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号