首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The effect of inoculum level on xylitol production byCandida guilliermondii was evaluated in a rice straw hemicellulose hydrolysate. High initial cell density did not show a positive effect in this bioconversion since increasing the initial cell density from 0.67 g L–1 to 2.41 g L–1 decreased both the rate of xylose utilization and xylitol accumulation. The maximum xylitol yield (0.71 g g–1) and volumetric productivity (0.56 g L–1 h–1) were reached with an inoculum level of 0.9 g L–1. These results show that under appropriate inoculum conditions rice straw hemicellulose hydrolysate can be converted into xylitol by the yeastC. guilliermondii with efficiency values as high as 77% of the theoretical maximum.  相似文献   

2.
The production of xylitol by the yeast Candida guilliermondii was investigated in batch fermentations with aspenwood hemicellulose hydrolysate and compared with results obtained in semi-defined media with a mixture of glucose and xylose. The hemicellulose hydrolysate had to be supplemented by yeast extract and the maximum xylitol yield (0.8 g g–1) and productivity (0.6 g l–1 h–1) were reached by controlling oxygen input.  相似文献   

3.
Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l–1). After 54 h, xylitol production from 30.5 g xylose l–1 reached 27.5 g l–1, resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g–1 and a productivity of 0.5 g l–1 h–1.  相似文献   

4.
Fifty-five bacterial strains isolated from soil were screened for efficient poly-3-hydroxybutyrate (P3HB) biosynthesis from xylose. Three strains were also evaluated for the utilization of bagasse hydrolysate after different detoxification steps. The results showed that activated charcoal treatment is pivotal to the production of a hydrolysate easy to assimilate. Burkholderia cepacia IPT 048 and B. sacchari IPT 101 were selected for bioreactor studies, in which higher polymer contents and yields from the carbon source were observed with bagasse hydrolysate, compared with the use of analytical grade carbon sources. Polymer contents and yields, respectively, reached 62% and 0.39 g g–1 with strain IPT 101 and 53% and 0.29 g g–1 with strain IPT 048. A higher polymer content and yield from the carbon source was observed under P limitation, compared with N limitation, for strain IPT 101. IPT 048 showed similar performances in the presence of either growth-limiting nutrient. In high-cell-density cultures using xylose plus glucose under P limitation, both strains reached about 60 g l–1 dry biomass, containing 60% P3HB. Polymer productivity and yield from this carbon source reached 0.47 g l–1 h–1 and 0.22 g g–1, respectively.  相似文献   

5.
The effect of nutrient supplementation of brewery’s spent grain (BSG) hydrolysates was evaluated with respect to biomass and xylitol production by Debaryomyces hansenii. For optimal biomass production, supplementation of full-strength BSG hydrolysates required only phosphate (0.5 g l−1 KH2PO4), leading to a biomass yield and productivity of 0.60 g g−1 monosaccharides and 0.55 g l−1 h−1, respectively. Under the conditions studied, no metabolic products other than CO2 and biomass were identified. For xylitol production, fourfold and sixfold concentrated hydrolysate-based media were used to assess the supplementation effects. The type of nutrient supplementation modulated the ratio of total polyols/total extracellular metabolites as well as the xylitol/arabitol ratio. While the former varied from 0.8 to 1, the xylitol/arabitol ratio reached a maximum value of 2.6 for yeast extract (YE)-supplemented hydrolysates. The increase in xylitol productivity and yield was related to the increase of the percentage of consumed xylose induced by supplementation. The best xylitol yield and productivity were found for YE supplementation corresponding to 0.55 g g−1 and 0.36 g l−1 h−1, respectively. In sixfold concentrated hydrolysates, providing that the hydrolysate was supplemented, the levels of xylitol produced were similar or higher than those for arabitol. Xylitol yield exhibited a further increase in the sixfold hydrolysate supplemented with trace elements, vitamins and minerals to 0.65 g g−1, albeit the xylitol productivity was somewhat lower. The effect of using activated charcoal detoxification in non-supplemented versus supplemented sixfold hydrolysates was also studied. Detoxification did not improve polyols formation, suggesting that the hemicellulose-derived inhibitor levels present in concentrated BSG hydrolysates are well tolerated by D. hansenii.  相似文献   

6.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

7.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

8.
Fourteen assays were conducted to study the influence of different variables, namely xylose concentration, inoculum level, agitation speed and nutrient supplementation, on xylitol biosynthesis by Candida guilliermondii FTI 20037. The maximum predicted values for xylitol yield (0.65 g g–1) and xylitol productivity (0.66 g l–1 h–1) can be attained with rice straw hydrolysate containing 60 g xylose l–1 without supplementation of ammonium sulfate, calcium chloride and rice bran extract, using 5 g inoculum l–1, at 250 rpm. Xylose concentration and inoculum level were selected for further optimization studies.  相似文献   

9.
Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g–1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g–1 h–1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Yethanol) decreased from 0.34 g g–1 to 0.025 g g–1 and Yxylitol increased from 0.15 g g–1 to 0.87 g g–1 (=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g–1 and 0.58 g g–1 h–1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.Electronic supplementary material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the electronic supplementary materialAn erratum to this article can be found at  相似文献   

10.
Casein hydrolysate at 2.0 g l–1 significantly enhanced forskolin content (2.3 mg g–1 cell dry wt) in a rhizogenic tumourous line, GCO-RCH-2 of Coleus forskohlii. In rooty teratoma line, RC-ST-2/4, forskolin content enhanced to 1.7 mg g–1 cell dry wt in presence of 2.5 g l–1 casein hydrolysate. Unlike untransformed calli and rhizogenic/root cultures, all the forskolin yielding transformed cultures of C. forskohlii have been maintained for over 5 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号