首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A rapid electrical potential, which we have named the M-potential, can be obtained from the Drosophila eye using a high energy flash stimulus. The potential can be elicited from the normal fly, but it is especially prominent in the mutant norp AP12 (a phototransduction mutant), particularly if the eye color pigments are genetically removed from the eye. Several lines of evidence suggest that the M-potential arises from photoexcitation of long-lived metarhodopsin. Photoexcitation of rhodopsin does not produce a comparable potential. The spectral sensitivity of the M-potential peaks at about 575 nm. The M-potential pigment (metarhodopsin) can be shown to photoconvert back and forth with a "silent pigment(s)" absorbing maximally at about 485 nm. The silent pigment presumably is rhodopsin. These results support the recent spectrophotometric findings that dipteran metarhodopsin absorbs at much longer wavelengths than rhodopsin. The M-potential probably is related to the photoproduct component of the early receptor potential (ERP). Two major differences between the M-potential and the classical ERP are: (a) Drosophila rhodopsin does not produce a rapid photoresponse, and (b) an anesthetized or freshly sacrificed animal does not yield the M-potential. As in the case of the ERP, the M-potential appears to be a response associated with a particular state of the fly visual pigment. Therefore, it should be useful in in vivo investigations of the fly visual pigment, about which little is known.  相似文献   

2.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

3.
The visual pigment in the peripheral retinular cells of the hoverfly Syrphus balteatus was investigated by absorbance difference measurements. Different visual pigments were found in the dorsal versus the ventral part of the eye in the male, but not in the female. In the male in the dorsal part of the eye the visual pigment has an isosbestic point at 513 nm; in the ventral part this value is 490 nm. The latter value is found in the female in both parts of the eye.Prolonged pupillary responses were studied in the male Syrphus and appeared to be most marked in the ventral part of the eye. In both hoverfly and blowfly prolonged pupillary responses are induced by short wavelength light only; i.e., by light which excessively can convert rhodopsin into metarhodopsin. By contrast, in butterflies red light (and a long dark adaptation time) is necessary to evoke a prolonged pupillary response. It was demonstrated in both hoverfly and blowfly that long wavelength light, which reconverts metarhodopsin into rhodopsin, inhibits a prolonged pupillary response; or, accelerates pupil opening.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

4.
Dragonflies of the genus Sympetrum have compound eyes conspicuously divided into dorsal and ventral regions. Using anatomical, optical, electrophysiological, in-vivo photochemical and microspectrophotometrical methods, we have investigated the design and physiology of the dorsal part which is characterized by a pale yellow-orange screening pigment and extremely large facets. The upper part of the yellow dorsal region is a pronounced fovea with interommatidial angles approaching 0.3°, contrasting to the much larger values of 1.5°–2° in the rest of the eye. The dorsal eye part is exclusively sensitive to short wavelengths (below 520 nm). It contains predominantly blue-receptors with a sensitivity maximum at 420 nm, and a smaller amount of UV-receptors. The metarhodopsin of the blue-receptors absorbs maximally at 535 nm. The yellow screening pigment transmits longwavelength light (cut-on 580 nm), which increases the conversion rate from metarhodopsin to rhodopsin (see Fig. 11a). We demonstrate that because of the yellow pigment screen nearly all of the photopigment is in the rhodopsin state under natural conditions, thus maximizing sensitivity. Theoretical considerations show that the extremely long rhabdoms (1.1 mm) in the dorsal fovea are motivated for absorption reasons alone. A surprising consequence of the long rhabdoms is that the sensitivity gain, caused by pumping photopigment into the rhodopsin state, is small. To explain this puzzling fact we present arguments for a mechanism producing a gradient of rhodopsin concentration along the rhabdom, which would minimize saturation of transduction units, and hence improve the signal-to-noise ratio at high intensities. The latter is of special importance for the short integration time and high contrast sensitivity these animals need for spotting small prey at long distances.Abbreviations ERG electroretinogram - R rhodopsin - M metarhodopsin  相似文献   

5.
The visual pigment and visual cycle of the lobster,Homarus   总被引:1,自引:0,他引:1  
Summary The visual pigment of the American lobster,Homarus americanus, has been studied in individual isolated rhabdoms by microspectrophotometry. Lobster rhodopsin has max at 515 nm and is converted by light to a stable metarhodopsin with max at 490 nm. These figures are in good agreement with corresponding values obtained by Wald and Hubbard (1957) in digitonin extracts. Photoregeneration of rhodopsin to metarhodopsin is also observed. The absorbance spectrum of lobster metarhodopsin is invariant with pH in the range 5.4–9, indicating that even after isomerization of the chromophore fromcis totrans, the binding site of the chromophore remains sequestered from the solvent environment. Total axial density of the lobster rhabdom to unpolarized light is about 0.7.As described for several other Crustacea, aldehyde fixation renders the metarhodopsin susceptible to photobleaching, a process that is faster at alkaline than at neutral or acid pH. Small amounts of a photoproduct with max at 370 nm are occasionally seen. A slower dark bleaching of lobster rhabdoms (1/2–2 h) also occurs, frequently through intermediates with absorption similar to metarhodopsin.The molar extinction coefficient of metarhodopsin is about 1.2 times greater than that of rhodopsin, each measured at their respective max. Isomerization of the chromophore fromcis totrans is accompanied by a change in the orientation of the absorption vector of about 3°. The absorption vector of metarhodopsin is either tilted more steeply into the membrane or is less tightly oriented with respect to the microvillar axes.When living lobsters are kept at room temperature, light adaptation does not result in an accumulation of metarhodopsin. At 4 °C, however, the same adapting lights cause a reduction of rhodopsin and an increase in metarhodopsin. There is thus a temperature-sensitive regeneration mechanism that supplements photoregeneration. Following 1 ms, 0.1 joule xenon flashes that convert about 70% of the rhodopsin to metarhodopsin in vivo, dark regeneration occurs in the living eye with half-times of about 25 and 55 min at 22 °C and 15 °C respectively.This work was supported by USPHS research grant EY 00222 to Yale University. S.N.B. was aided by NIH Postdoctoral Fellowship EY 52378.  相似文献   

6.
Summary In the compound eye of the moth Antheraea polyphemus, three types of visual pigments were found in extracts from the retina and by microspectrophotometry in situ. The absorption maxima of the receptor pigment P and the metarhodopsin M are at (1) P 520–530 nm, M 480–490 nm; (2) P 460–480 nm, M 530–540 nm; (3) P 330–340 nm, M 460–470 nm. Their localization was investigated by electron microscopy on eyes illuminated with different monochromatic lights. Within the tiered rhabdom, constituted of the rhabdomeres of nine visual cells, the basal cell contains a blue-and the six medial cells have a greenabsorbing pigment. The two distal cells of most ommatidia also have the blue pigment; only in the dorsal region of the eye, these cells contain a UV-absorbing pigment, which constitutes a portion of only 5% of the visual pigment content within the entire retina. The functional significance of this distribution is discussed.  相似文献   

7.
Summary The spectral absorbance by the visual pigments in the compound eye of the mothDeilephila elpenor was determined by microphotometry. Two visual pigments and their photoproducts were demonstrated. The photoproducts are thermostable and are reconverted to the visual pigments by light. The concentrations of the visual pigments and the photoproducts at each wavelength are determined by their absorbance coefficients at this wavelength. P 525: The experimental recordings (difference spectra and spectral absorbance changes after exposure to monochromatic lights) were completely reproduced by calculations using nomograms for vertebrate rhodopsin. The identity between experimental recordings and calculations show: One visual pigment absorbs maximally at 525 nm (P 525). The resonance spectrum of the visual pigment is identical to that for a vertebrate rhodopsin (max at 525 nm). The photoproduct of this pigment absorbs maximally at 480 nm (M 480). It is similar to the acid metarhodopsin in cephalopods. The relative absorbance of P 525 to that of M 480 is 11.75. The quantum efficiency for photoconversion of P 525 to M 480 is nearly equal to that for reconversion of M 480 to P 525. Wavelengths exceeding about 570 nm are absorbed only by P 525, i. e. P 525 is completely converted to M 480. Shorter wavelengths are absorbed both by P 525 and M 480. At these wavelengths a photoequilibrium between the two pigments is formed. Maximal concentration of P 525 is obtained at about 450 nm. P 350: A second visual pigment absorbs maximally at about 350 nm (P 350), and its photoproduct at 450 to 460 nm. In the region of spectral overlap a photoequilibrium between the two pigments is formed.The visual pigment and the photoproduct are similar to those in the neuropteran insectAscalaphus.The work reported in this article was supported by Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie Ha 258-10, and SFB 114, by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst.  相似文献   

8.
Discrepancies exist among spectral measurements of sensitivity of crayfish photoreceptors, their absorption in situ, and the number and absorption spectra of crayfish photopigments that are extracted by digitonin solutions. We have determined the photosensitivity spectrum of crayfish rhodopsin in isolated rhabdoms using long wavelength fluorescence emission from crayfish metarhodopsin as an intrinsic probe. There is no measurable metarhodopsin in the dark-adapted receptor, so changes in the emission level are directly proportional to metarhodopsin concentration. We therefore used changes in metarhodopsin fluorescence to construct relaxation and saturation ("photoequilibrium") spectra, from which the photosensitivity spectrum of crayfish rhodopsin was calculated. This spectrum peaks at or approximately 530 nm and closely resembles the previously measured difference spectrum for total bleaches of dark-adapted rhabdoms. Measurements of the kinetics of changes in rhabdom fluorescence and in transmittance at 580 nm were compared with predictions derived from several model systems containing one or two photopigments. The comparison shows that only a single rhodopsin and its metarhodopsin are present in the main rhabdom of crayfish, and that other explanations must be sought for the multiple pigments seen in digitonin solution. The same analysis shows that there is no detectable formation of isorhodopsin in the rhabdom.  相似文献   

9.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

10.
Summary Rhabdoms of the green crabCarcinus maenas were examined by microspectrophotometry and found to contain a visual pigment with max at 502–506 nm. Upon irradiation, a stable metarhodopsin formed with unchanged max and molar extinction coefficient. In the presence of 5% glutaraldehyde the rhabdoms were photobleached. Partial bleaching experiments indicate that in the rhabdoms studied, only one visual pigment was present, with an absorption spectrum appropriate for a hypothetical rhodopsin from Dartnall's (1953) nomogram.Retinular (photoreceptor) cells were studied with microelectrodes. They had negative resting potentials of 30–65 mV and responded to light with depolarizing receptor potentials. All cells had maximum sensitivity at ~493 nm, as did the ERG (electroretinogram). Selective adaptation failed to alter the spectral sensitivity functions of single cells or the ERG. If these spectral sensitivity data are pooled with Wald's (1968), the average sensitivity of the dark-adapted eye is accounted for adequately by the pigment of the rhabdom.The results of this work do not support the hypothesis of Horridge (1967) that each ommatidium ofCarcinus has two color receptors.This work was supported by U.S. P.H.S. grant EY 00222.  相似文献   

11.
The compound eye of the Small White butterfly, Pieris rapae crucivora, has four classes of visual pigments, with peak absorption in the ultraviolet, violet, blue and green, but electrophysiological recordings yielded eight photoreceptors classes: an ultraviolet, violet, blue, double-peaked blue, green, blue-suppressed-green, pale-red and deep-red class. These photoreceptor classes were identified in three types of ommatidia, distinguishable by the different eye shine spectra and fluorescence; the latter only being present in the eyes of males. We present here two slightly different optical models that incorporate the various visual pigments, the light-filtering actions of the fluorescent, pale-red and deep-red screening pigment, located inside or adjacent to the rhabdom, and the reflectance spectrum of the tapetum that abuts the rhabdom proximally. The models serve to explain the photoreceptor spectral sensitivities as well as the eye shine.  相似文献   

12.
Invertebrate opsins are unique among the visual pigments because the light-activated conformation, metarhodopsin, is stable following exposure to light in vivo. Recovery of the light-activated pigment to the dark conformation (or resting state) occurs either thermally or photochemically. There is no evidence to suggest that the chromophore becomes detached from the protein during any stage in the formation or recovery processes. Biochemical and structural studies of invertebrate opsins have been limited by the inability to express and purify rhodopsins for structure-function studies. In this study, we used Drosophila to produce an epitope-tagged opsin, Rh1-1D4, in quantities suitable for spectroscopic and photochemical characterization. When expressed in Drosophila, Rh1-1D4 is localized to the rhabdomere membranes, has the same spectral properties in vivo as wild-type Rh1, and activates the phototransduction cascade in a normal manner. Purified Rh1-1D4 visual pigment has an absorption maximum of the dark-adapted state of 474 nm, while the metarhodopsin absorption maximum is 572 nm. However, the metarhodopsin state is not stable as purified in dodecyl maltoside but decays with kinetics that require a double-exponential fit having lifetimes of 280 and 2700 s. We investigated the primary properties of the pigment at low temperature. At 70 K, the pigment undergoes a temperature-induced red shift to 486 nm. Upon illumination with 435 nm light, a photostationary state mixture is formed consisting of bathorhodopsin (lambda(max) = 545 nm) and isorhodopsin (lambda(max) = 462 nm). We also compared the spectroscopic and photochemical properties of this pigment with other vertebrate pigments. We conclude that the binding site of Drosophila rhodopsin is similar to that of bovine rhodopsin and is characterized by a protonated Schiff base chromophore stabilized via a single negatively charged counterion.  相似文献   

13.
The benthic amphipod Pontoporeia affinis lives in the Baltic sea and in northern European lakes in an environment where very little light is available for vision. The eyes, consisting of 40–50 ommatidia, are correspondingly modified. Microspectrophotometric recordings on isolated eyes show the presence of at least two kinds of screening pigments in the ommatidia with maxima at 540–580 nm and 460–500 nm. Difference spectra obtained from the rhabdoms after exposure to red and blue light, respectively, give evidence of a single rhodopsin with its maximum at 548 nm and a 500-nm metarhodopsin. In ERG recordings sensitivity in the dark-adapted state, after saturating exposures to blue and to red light, stabilizes at levels determined by the rhodopsin concentration. No change is observed during 10–14 h after the beginning of dark adaptation. However, using animals pre-exposed with a strong red light and then kept in darkness, it is found that after a delay of 20–40 h sensitivity of the dark-adapted eye begins to increase and finally, after 5–6 days reaches a level corresponding to 100% rhodopsin. Thus, a slow renewal of rhodopsin appears to occur in darkness, where a photoisomerization of metarhodopsin is excluded.Abbreviations ERG electroretinogram - IR infrared - MSP microspectrophotometry  相似文献   

14.
Summary Light-induced phosphorylation and dephosphorylation of the visual pigment protein, opsin, was investigated in isolated retinae of the blowfly making use of the fact that photon capture by rhodopsin leads to the formation of a thermostable metarhodopsin. Retinae were exposed, in the presence of exogenous32P-orthophosphate, to an intense blue light which initiated the phosphorylation of opsin (half-time about 5 min at 25 °C). Subsequent exposure of the retina to red light converted all the metarhodopsin present into rhodopsin and triggered a relatively rapid dephosphorylation of rhodopsin (half-time less than 20 s). It is proposed that the phosphorylated forms of rhodopsin and metarhodopsin represent inactive states of the pigment, i.e. phosphorylated metarhodopsin does not initiate reactions leading to the excitation of the photoreceptor cell and phosphorylated rhodopsin cannot be converted into physiologically active metarhodopsin without first being dephosphorylated.Abbreviations R1–6 peripheral retinula cells of the blowfly ommatidium - PDA prolonged depolarizing afterpotential - R rhodopsin - M metarhodopsin - R-P n phosphorylated rhodopsin - M-P n phosphorylated metarhodopsin - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis  相似文献   

15.
Summary The prolonged depolarizing afterpotential (PDA) is a phenomenon which is tightly linked to visual pigment conversion. In order to determine whether processes underlying PDA induction and depression can spread in space, the PDA was recorded intracellularly in white-eyedCalliphora R1-6 photoreceptors and used to examine interactions between processes induced by activating statistically different photopigment molecules (Figs. 3–6). It was found that a PDA induced by converting some fraction of rhodopsin (R) molecules forward into the metarhodopsin (M) state can be completely depressed by equal or smaller amounts of pigment conversion, backward from metarhodopsin to rhodopsin even when largely different sets of pigment molecules were shifted in the respective directions, in agreement with previous experiments conducted on the barnacle. The characteristics of the afterpotentials obtained following the cessation of strong blue and green light stimuli which did not cause a net pigment conversion was examined (Figs. 7, 8). It was found that these afterpotentials, obtained when nonet R to M conversion took place, could not be depressed by an opposite net large M to R pigment conversion. Accordingly we propose to restrict the term PDA to an afterpotential which can be depressed by a net M to R pigment conversion. It is concluded: (a) that some processes underlying PDA induction and depression inCalliphora must interact at a distance which extends at least to the nearest neighboring pigment molecule, and (b) that inCalliphora photoreceptors net pigment conversion is required in order to induce and depress a PDA.Abbreviations R rhodopsin - M metarhodopsin - R to M rhodopsin to metarhodopsin pigment conversion - M to R metarhodopsin to rhodopsin pigment conversion - PDA prolonged depolarizing afterpotential - ERG electroretinogram - M potential metarhodopsin potential - ERP early receptor potential  相似文献   

16.
G Renk  R K Crouch 《Biochemistry》1989,28(2):907-912
Several analogue pigments have been prepared containing retinals altered at the cyclohexyl ring or proximal to the aldehyde group in order to examine the role of the chromophore in the formation of the metarhodopsin I and II states of visual pigments. Deletion of the 13-methyl group on the isoprenoid chain did not affect metarhodopsin formation. However, analogue pigments containing chromophores with modified rings did not show the typical absorption changes associated with the metarhodopsin transitions of native or regenerated rhodopsins. In particular, 4-hydroxyretinal pigments did not show clear transitions between the metarhodopsin I and metarhodopsin II states. Pigment formed with an acyclic retinal showed no evidence by absorption spectroscopy of metarhodopsin formation. A retinal altered by substitution of a five-membered ring containing a nitroxide required a more acidic pH than the native pigment for formation of the metarhodopsin II state. ESR data suggest that the ring remains buried within the protein through the metarhodopsin II state. However, the Schiff base linkage is susceptible to hydrolysis of hydroxylamine in the metarhodopsin II state. These data indicate that (1), in the transition from rhodopsin to metarhodopsin II, major protein conformational changes are occurring near the lysine-retinal linkage whereas the ring portion of the chromophore remains deeply buried within the protein and (2) pigment absorptions characteristic of the metarhodopsin I and II states may be due to specific protein-chromophore interactions near the region of the chromophore ring.  相似文献   

17.
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.  相似文献   

18.
The visual pigment of a stomatopod crustacean,Squilla empusa   总被引:2,自引:0,他引:2  
Summary Stomatopod crustaceans are visually active animals which have large, mobile compound eyes of unique design. Aspects of their ecology and behavior suggest they may be able to discriminate hues. Isolated rhabdoms of the squillid stomatopod,Squilla empusa, were investigated using microspectrophotometry and fluorometry. A single rhodopsin, of max507 nm, exists in the main rhabdom. Its stable metarhodopsin, with max503 nm, possesses typical arthropod fluorescence characteristics. No evidence was found for a visual pigment with peak absorption in the ultraviolet. Vision in this animal might therefore be monochromatic.Abbreviation ASW artificial sea water  相似文献   

19.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

20.
Fresh, frozen sections of the photoreceptor layer of the compound eye of the moth Galleria have been examined by microspectrophotometry, using 4 X 8 mum measuring beams that sampled from approximately two to four rhabdoms. The principal visual pigmen: absorbs maximally at 510 nm (P510), and on irradiation is converted to a thermally stable, pH-insensitive metarhodopsin with lambdamax at 484 nm (M484) and a 43% increase in molar extinction coefficient. Subsequently, short wavelength irradiation of the metarhodopsin photoregenerates some P510; but the absence of an isosbestic point in the cycle of spectral changes is consistent with the presence of smaller amounts of violet- or ultraviolet-sensitive visual pigment(s) that also are converted to a blue-absorb g metarhodopsin. Difference spectra for both P510 and M484 were measured, using hydroxylamine. The 484-nm metarhodopsin is reversibly converted to a form with lambdamax at 363 nm by high concentrations of glycerol. Dark regeneration of rhodopsin in vivo after several minutes exposure of thoroughly dark-adapted animals to full sunlight requires several days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号