首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3rd regular meeting of the Canadian Society of Ecology and Evolution was held at the University of British Columbia, Vancouver, Canada from 11 to 14 May 2008.  相似文献   

2.
《TARGETS》2003,2(1):10-13
Ian Humphery-Smith is Professor of Pharmaceutical Proteomics at Utrecht University, The Netherlands, and until recently was a Managing Director and Chief Scientific Officer of Glaucus Proteomics. After a PhD in Parasitology at the University of Queensland, he studied virology and bacteriology in France as a post-doc, before returning to Australia as Course-Coordinator in Medical Microbiology and Immunology at the University of Sydney. During this time, Humphery-Smith took up the posts of Executive Director of Australia's second largest DNA sequencing facility and Director of the Center for Proteomic Research and Gene-Product Mapping, which later became the world's first center to focus on studying the proteome. Humphery-Smith has devoted ten years of research to analyzing proteins in health and disease, and it was his work that originally coined the term ‘proteomics’. He was the first to publish the most complete analysis of an entire proteome in 2000, that of the bacterium Mycoplasma genitalium. He currently serves as a council member of the Human Proteome Organization (HUPO) and has been a prime mover in efforts to have the Human Proteome Project become a formally-ratified international initiative to follow-on from the Human Genome Project.  相似文献   

3.
Proteomics: quantitative and physical mapping of cellular proteins   总被引:66,自引:0,他引:66  
Genome sequencing provides a wealth of information on predicted gene products (mostly proteins), but the majority of these have no known function. Two-dimensional gel electrophoresis and mass spectrometry have, coupled with searches in protein and EST databases, transformed the protein-identification process. The proteome is the expressed protein complement of a genome and proteomics is functional genomics at the protein level. Proteomics can be divided into expression proteomics, the study of global changes in protein expression, and cell-map proteomics, the systematic study of protein-protein interactions through the isolation of protein complexes.  相似文献   

4.
《Ecological Indicators》2008,8(2):131-140
Many organizations and individuals are developing sustainable forestry criteria and indicator (C&I) research and monitoring initiatives at various scales. In support of Canada's international commitments, the Canadian Council of Forest Ministers (CCFM) recently (2003) revised a set of national C&I, broadly based on the Montreal Process. Meanwhile, the Province of British Columbia, Canada, has implemented new, results-based, legislation, the Forest and Range Practices Act 2003, which sets objectives for 11 public ‘Values’ that require appropriate C&I for effectiveness evaluation. At the local-level, British Columbia's forest industry requires indicators to achieve third-party certification. Each of these parties seeks to assess and report on performance. There is, therefore, a recognized desire to define a collaborative approach to C&I research and monitoring frameworks in British Columbia. This paper discusses the results of a rigorous review of indicators related to sustainable forest management (SFM) in British Columbia. Based on the 6 CCFM indicators, 47 SFM questions were developed to guide the selection of potential indicators for British Columbia. A hierarchical framework of proposed SFM indicators was then proposed to provide trend information on resource condition at both the macro (landscape) and local (management unit) levels of forest management. However, a number of key challenges remain for British Columbia as it continues towards a scientifically sound, useful, and effective indicator framework that will demonstrate progress towards SFM at the provincial level. These include stakeholder consultation, practicality, data interpretation and long-term commitment.  相似文献   

5.
The need for factual information on all phases of medical education is widely recognized. In the United States the Association of American Medical Colleges has initiated an extensive program of research in medical education. No comparable program exists in Canada.On the basis of studies of medical students at the University of British Columbia and the University of Saskatchewan, a prospectus for Canadian studies in medical education is suggested. Such studies might include an annual census of Canadian medical students as well as detailed studies of specific problems. Until such studies have been undertaken in Canada, only an incomplete picture of the various problems in medical education will be available.  相似文献   

6.
This paper reports on the 5th joint British Society for Proteome Research (BSPR) and European Bioinformatics Institute (EBI) meeting which took place at the Wellcome Trust Conference Centre, Cambridge, UK, from the 8th to 10th July, 2008. As in previous years, the meeting attracted leading experts in the field who presented the latest cutting edge in proteomics. The meeting was entitled “Proteomics: From Technology to New Biology” taking into account the major transition proteomics has undergone in the past few years. In particular, the use of multiple reaction monitoring (MRM)‐based targeted experiments for absolute quantification and validation of proteins was the hot topic of the meeting. Attended by some 250 delegates, the conference was extremely well organised and provided a great opportunity for discussion and initiation of new collaborations.  相似文献   

7.
Exhibit A: Objects of Intrigue. Museum of Anthropology, University of British Columbia, Vancouver, March 9, 1999–March 31, 2000.
Objects and Expressions: Celebrating the Collections of the Museum of Anthropology at the University of British Columbia. Vancouver: Museum of Anthropology, University of British Columbia, 1999.  相似文献   

8.
Since the publication of the human genome, two key points have emerged. First, it is still not certain which regions of the genome code for proteins. Second, the number of discrete protein-coding genes is far fewer than the number of different proteins. Proteomics has the potential to address some of these postgenomic issues if the obstacles that we face can be overcome in our efforts to combine proteomic and genomic data. There are many challenges associated with high-throughput and high-output proteomic technologies. Consequently, for proteomics to continue at its current growth rate, new approaches must be developed to ease data management and data mining. Initiatives have been launched to develop standard data formats for exchanging mass spectrometry proteomic data, including the Proteomics Standards Initiative formed by the Human Proteome Organization. Databases such as SwissProt and Uniprot are publicly available repositories for protein sequences annotated for function, subcellular location and known potential post-translational modifications. The availability of bioinformatics solutions is crucial for proteomics technologies to fulfil their promise of adding further definition to the functional output of the human genome. The aim of the Oxford Genome Anatomy Project is to provide a framework for integrating molecular, cellular, phenotypic and clinical information with experimental genetic and proteomics data. This perspective also discusses models to make the Oxford Genome Anatomy Project accessible and beneficial for academic and commercial research and development.  相似文献   

9.
Since the publication of the human genome, two key points have emerged. First, it is still not certain which regions of the genome code for proteins. Second, the number of discrete protein-coding genes is far fewer than the number of different proteins. Proteomics has the potential to address some of these postgenomic issues if the obstacles that we face can be overcome in our efforts to combine proteomic and genomic data. There are many challenges associated with high-throughput and high-output proteomic technologies. Consequently, for proteomics to continue at its current growth rate, new approaches must be developed to ease data management and data mining. Initiatives have been launched to develop standard data formats for exchanging mass spectrometry proteomic data, including the Proteomics Standards Initiative formed by the Human Proteome Organization. Databases such as SwissProt and Uniprot are publicly available repositories for protein sequences annotated for function, subcellular location and known potential post-translational modifications. The availability of bioinformatics solutions is crucial for proteomics technologies to fulfil their promise of adding further definition to the functional output of the human genome. The aim of the Oxford Genome Anatomy Project is to provide a framework for integrating molecular, cellular, phenotypic and clinical information with experimental genetic and proteomics data. This perspective also discusses models to make the Oxford Genome Anatomy Project accessible and beneficial for academic and commercial research and development.  相似文献   

10.
The European Proteomics Association (EuPA) 2012 Scientific Congress ‘New Horizons and Applications for Proteomics’, hosted by the British Society for Proteome Research (BSPR)

Glasgow, Scotland, UK, 12 July 2012

Cross-linking/mass spectrometry ended decades of method developments and entered the era of applications at this year’s European Proteomics Association meeting. The train has started moving, with successful applications of this tool by multiple pioneering laboratories addressing biological and structural problems. Proteomics, on the other side, sees ever increasing data volumes, leading to questions as to how to store the data mountain publically, use it and convert it into testable hypotheses. The European Proteomics Association meeting has been complementary to the American Society for Mass Spectrometry meeting in many ways, also thanks to its more manageable size and the vision of the organizers in inviting some of Europe’s best emerging minds.  相似文献   

11.
蛋白质组学-引领后基因组时代   总被引:12,自引:0,他引:12  
蛋白质组学是建立在高通量筛选技术的基础上发展的方法学,用于研究细胞功能网络模块中蛋白相互作用及在疾病或病变中蛋白和蛋白相互作用所发生的系统动态的差异变化;其研究技术奠基于双向凝胶电泳。及至世纪之交,随着质谱及蛋白质芯片的引进,蛋白质组学已广泛应用在生命科学上。其在医学上的应用,主要旨在发现疾病的特异性蛋白质分子或其蛋白质纹印,以揭示疾病的发生机制,也作为早期诊断、分子分型、疗效及预后判断的依据,并找出可能成为新药物设计的分子靶点,为疾病提供新的治疗方案。随着人类基因序列的完成,蛋白质组学热浪掀起了后基因组年代的序幕,人类将更深入地了解疾病和生命的本源。现就蛋白质组学10年来的发展历程、研究技术、在人类疾病中的应用及未来展望等作出精简的评述。  相似文献   

12.
This recent meeting, held on the campus of the University of British Columbia, attracted 1200 delegates and a vast array of talks, but was notable for a remarkable showing of talks and posters on DNA barcoding in plants, spread through many sessions. The Canadian Centre for DNA Barcoding defines barcoding as ‘species identification and discovery through the analysis of short, standardized gene regions known as DNA barcodes’. This approach is somewhat controversial in animals ( Rubinoff et al., 2006 ), although it has been shown to be useful and reliable in many metazoan taxa ( Meyer & Paulay 2005 ; Hajibabaei et al., 2007 ), in which the mitochondrial cytochrome oxidase I (COI) gene is used. However, in land plants, COI evolves far too slowly to be useful, and there is no obvious single universal alternative ( Fazekas et al., 2008 ). Genes that work well in one taxon may perform poorly in other taxa. Additionally, some perfectly good plant species, reproductively isolated and morphologically and ecologically distinct, are too young to show much sequence divergence at most loci. Nevertheless, as we saw at this conference, progress has been made towards identifying genes that serve many of the functions of DNA barcodes, at least in some plant taxa.  相似文献   

13.
14.
Cryan LM  O'Donoghue N 《Proteomics》2006,6(22):5894-5897
This report summarizes the highlights of the recent British Society for Proteome Research (BSPR) meeting jointly organized with the European Bioinformatics Institute (EBI) which was held at the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK in July 2006. This was the third annual scientific meeting organized by the BSPR and EBI and the theme of this years meeting was Integrative Proteomics: Structure, function and interaction. A wealth of local and overseas speakers were invited to discuss both their own work and specific challenges present in modern day proteomic based experiments.  相似文献   

15.
蛋白质组学及其技术发展   总被引:8,自引:0,他引:8  
蛋白质组学产生于20世纪90年代,发展至今已日趋成熟。蛋白质组学是以生物体的全部或部分蛋白为研究对象,研究它们在生命活动过程中的作用、功能。蛋白质组学较之前的基因组学对于生命现象的解释更直接、更准确,近年得到了快速发展,并受到世界各国学者的高度关注。我们简要综述了蛋白质组学及其技术,并简单概述了这项技术在生命科学领域的应用。  相似文献   

16.
McIntyre SF 《Proteomics》2005,5(15):3828-3830
This report describes the highlights of the second scientific meeting of the British Society for Proteome Research (BSPR), jointly organised with the European Bioinformatics Institute (EBI), and held at The Genome Centre, Cambridge UK in July 2005. The theme of the meeting was "From Proteins to Systems" covering many diverse aspects of proteomics, bioinformatics and systems biology.  相似文献   

17.
A unique provincial medical library service has been established in British Columbia. Under the direction of professional librarians, the central library in Vancouver is building an extensive, largely clinical collection while 30 smaller branch libraries in hospitals throughout the province are establishing basic, up-to-date collections. Financial support comes from an annual fee of $25.00 per doctor paid to the College of Physicians and Surgeons of British Columbia. Photoduplication, mail and telephone services meet many reference needs. Reading is vital to continuing medical education. The library works closely with the University of British Columbia''s Department of Continuing Medical Education to bring current medical knowledge to every doctor in British Columbia.  相似文献   

18.
Proteomics technologies and challenges   总被引:4,自引:0,他引:4  
Proteomics is the study of proteins and their interactions in a cell. With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. The advent of proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein pathways and signaling cascades. Mass spectrometry plays a vital role in proteomics and has become an indispensable tool for molecular and cellular biology. While the potential is great, many challenges and issues remain to be solved, such as mining low abundant proteins and integration of proteomics with genomics and metabolomics data. Nevertheless, proteomics is the foundation for constructing and extracting useful knowledge to biomedical research. In this review, a snapshot of contemporary issues in proteomics technologies is discussed.  相似文献   

19.
This report reviews the joint British Society for Proteome Research (BSPR) and European Bioinformatics Institute (EBI) 2007 meeting, 'Integrative Proteomics: From Molecules to Systems' which took place at the Wellcome Trust Conference Centre, Hinxton, UK, from 25th to 27th July. The aim of this year's meeting was to explore how the integration of 'omic' technologies can lead to a comprehensive understanding of cellular organization, differentiation and signalling. Studies investigating protein-protein interactions and trafficking illustrated how the combination of proteomics and bioinformatics is allowing systems biology to develop as a discipline in its own right.  相似文献   

20.
丝状真菌不仅是致病菌,而且在异源表达工业酶、化学制品以及药物活性物质中发挥着越来越重要的作用。随着人类基因组计划的实施和推进,生命科学研究已进入了功能基因组时代,特别是蛋白质组学,在蛋白质水平对丝状真菌细胞生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,对生命的复杂活动进行深入而又全面的认识也为丝状真菌工业酶制剂和重组药物的开发提供广阔的创新空间。本文综述了蛋白质组学的研究内容和方法,总结了其在丝状真菌致病菌、抗生素产生菌和纤维素酶产生菌中的应用现状。不同层次的功能基因组学分析可以从各个角度掌握生物体的代谢网络和调控机制,本文还对蛋白质组学以及功能基因组学各部分内容的整合运用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号