首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth curves of one epizootic hemorrhagic disease (EHD) virus serotype (Reoviridae), two Akabane virus strains (Bunyaviridae) and three bovine ephemeral fever (BEF) group viruses (Rhabdoviridae) were determined in Aedes albopictus cells maintained at 15, 20, 28 and 33 degrees C. Ae albopictus cells supported the growth of all the viruses although not necessarily at all temperatures. Because none of the viruses exhibited cytopathic effect in Ae albopictus cells, growth was assayed in baby hamster kidney 21 (BHK21) cells maintained at 37 degrees C. The temperature at which the Ae albopictus cells were maintained had a marked effect on the growth and yield for each virus studied. EHD virus was heat-stable and grew after 4 days at 28 and 33 degrees C, and after 8 days at 20 degrees C. No growth was recorded up to 12 days at 15 degrees C. The two Akabane viruses were heat-sensitive and exhibited different growth patterns. One strain (B8935) showed no growth at 15 degrees C and only minimal growth at 20, 28 and 33 degrees C. The other strain (CSIRO 16) showed growth after 1-2 days at all temperatures with higher titres reached at 15 and 20 degrees C than at 28 and 33 degrees C. The BEF group viruses grew to approximately the same titres at all temperatures. At the higher temperatures (28 and 33 degrees C) most of BEF group viruses had disappeared within 9 days. In contrast at the lower temperatures (15 and 20 degrees C), there was still virus present 18 days after inoculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.  相似文献   

3.
HEp-2 cell proteins electrophoretically separated in denaturing polyacrylamide gels and electrically transferred to nitrocellulose sheets contain a polypeptide which efficiently binds linear native DNA end labeled with 32P but not denatured DNA. The polypeptide has an apparent molecular weight of ca. 130,000. The activity of the protein was stable, and no appreciable turnover was observed after exposure of uninfected cells to inhibitory concentrations of cycloheximide for intervals of up to 24 h. However, the activity was absent from lysates of cells harvested 6 h or later postinfection with wild-type viruses. To identify the viral function involved in the loss of DNA-binding activity, we tested the lysates of cells infected with several mutants. Thus, the DNA-binding activity was unaffected in cells infected with a temperature-sensitive mutant (herpes simplex virus 1 tsLB2) in the alpha 4 gene and was maintained at a nonpermissive temperature (39 degrees C). Experiments involving (i) temperature shift-down of cells infected with tsLB2 in the presence of cycloheximide, (ii) withdrawal of cycloheximide in the presence and absence of actinomycin D from cells infected with wild-type virus, (iii) infection of cells at 33 and 39 degrees C with herpes simplex virus 1 tsHA1 carrying a temperature-sensitive lesion in the beta 8 gene, and (iv) infection of cells in the presence of inhibitory concentrations of phosphonoacetate led to the conclusion that the viral functions responsible for the loss of DNA-binding capacity were specified by either beta or gamma genes not dependent on viral DNA synthesis for their expression.  相似文献   

4.
We investigated the correlation between the development of acute thermotolerance and the phosphorylation, synthesis, and expression of the HSP28 family in murine L929 cells. Following heating at 43 degrees C for 30 min, thermotolerance developed rapidly in exponential-phase cells and reached its maximum 4-9 h after heat shock. Maximal thermal resistance was maintained for 24 h and then gradually decayed. However, heat-induced phosphorylation of HSP28 was not detected. Furthermore, HSP28 synthesis during incubation at 37 degrees C for 12 h following heat shock was not detected by [3H]-leucine labeling followed by two-dimensional polyacrylamide gel electrophoresis. In addition, Northern blots failed to demonstrate expression of the HSP28 gene. Unlike HSP28, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was observed during incubation at 37 degrees C after heat shock. These results demonstrate that HSP28 synthesis and its phosphorylation are not required to develop acute thermotolerance in L929 cells.  相似文献   

5.
为明确E61-24-P15 A型重组流感病毒的第189代传代子病毒(IVpi-189)是否具备流感病毒温度敏感减毒活疫苗候选株的特点,将IVpi-189病毒感染MDCK细胞,并于不同培养温度条件下培养,观察其致细胞病变效应,病毒合成、释放情况,以及不同温度条件下病毒存活时间。结果显示32℃培养温度下,IVpi-189病毒具有等同于亲代野生病毒株的诱导细胞病变能力,而当培养温度上调至38℃,IVpi-189病毒致细胞病变效果出现缓慢且程度明显减轻。空斑形成单位实验发现IVpi-189病毒在38℃培养条件下增殖能力明显下降,其原因与病毒灭活速度及子病毒释放无关,但与感染细胞病毒合成能力下降有关。上述实验结果初步证实流感病毒持续感染细胞系来源的IVpi-189病毒具有温度敏感减毒活疫苗的生物学特性,在许可培养温度条件下具有良好的增殖能力,而在非许可培养温度下,病毒增殖活性受到明显抑制。本研究为流感病毒减毒活疫苗的开发研制提供实验佐证。  相似文献   

6.
The growth kinetics of tanapox virus in owl monkey kidney cells was elucidated by single-step growth curves at multiplicities of 10, 1.0, and 0.1 plaque forming units (pfu) per cell at 37 and 33 degrees C. Virus replicated equally well at both temperatures and produced a cytopathic effect that was characterized by densely packed rounded cells with retrogressed monolayer and granular vacuolated cytoplasm. Single-step growth curves revealed that the eclipse period varied from 24 h postinfection (hpi) at a multiplicity of infection of 10 pfu/cell to 48 hpi at 0.1 pfu/cell. The length of the latent period also varied from 36 hpi at 10 pfu/cell to 48 hpi at 0.1 pfu/cell. The intracellular virus, extracellular virus, and total virus titers reached their maximums relatively early at 10 pfu/cell as compared with 0.1 pfu/cell. About 78% of the mature progeny virion is retained intracellularly at 10 pfu/cell at 96 hpi. We conclude that tanapox virus replication is similar to other poxviruses, but the replication cycle is longer when compared with vaccinia virus.  相似文献   

7.
A Vero cell adapted Green strain of canine distemper virus (CDV) was tested for its plaque-forming capacity in different cell lines. Plaque formation was observed in HEp-2, BS-C-1, and HeLa cells but not in Vero or dog kidney cells even though replication and cytopathology were observed in the latter cell types. In the cells in which the virus was capable of producing plaques, the plaques were observed within 24 h post infection and continued to increase in size with subsequent cellular destruction such that by 72 h postinfection the size of the plaques approached 0.5 mm. With the use of the plaquing technique, it was possible to demonstrate the thermal lability of the virus as well as the kinetics of adsorption. Thus, it was shown that the half-life of the virus was 125 min at 25 degrees C, 75 min at 35 degrees C, and 65 min at 37 degrees C. The rate of adsorption of CDV to HEp-2 cells was 17.2% in 30 min at 37 degrees C and continued slowly for 4 h before completion. Application of this rapid plaque-forming assay to plaque-reduction tests for CDV antibody and for CDV-infected cells by the infectious center assay are described.  相似文献   

8.
Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP(64/F), a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33 degrees C than at 37 degrees C. The open reading frames (ORFs) encoding GP64 or GP(64/F), along with two marker ORFs encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP(64/F) protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSDeltaSH,G,F/GP64 or RSDeltaSH,G,F/GP(64/F), respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSDeltaSH [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP(64/F) proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSDeltaSH,G,F/GP64 and RSDeltaSH,G,F/GP(64/F) replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.  相似文献   

9.
Specific Sindbis virus-coded function for minus-strand RNA synthesis.   总被引:31,自引:26,他引:5       下载免费PDF全文
The synthesis of minus-strand RNA was studied in cell cultures infected with the heat-resistant strain of Sindbis virus and with temperature-sensitive (ts) belonging to complementation groups A, B, F, and G, all of which exhibited an RNA-negative (RNA-) phenotype when infection was initiated and maintained at 39 degrees C, the nonpermissive temperature. When infected cultures were shifted from 28 degrees C (the permissive temperature) to 39 degrees C at 3 h postinfection, the synthesis of viral minus-strand RNA ceased in cultures infected with ts mutants of complementation groups B and F, but continued in cultures infected with the parental virus and mutans of complementation groups A and G. In cultures infected with ts11 of complementation group B, the synthesis of viral minus-strand RNA ceased, whereas the synthesis of 42S and 26S plus-strand RNAs continued for at least 5 h after the shift to 39 degrees C. However, when ts11-infected cultures were returned to 28 degrees C 1 h after the shift to 39 degrees C, the synthesis of viral minus-strand RNA resumed, and the rate of viral RNA synthesis increased. The recovery of minus-strand synthesis translation of new proteins. We conclude that at least one viral function is required for alphavirus minus-strand synthesis that is not required for plus-strand synthesis. In cultures infected with ts6 of complementation group F, the syntheses of both viral plus-strand and minus-strand RNAs were drastically reduced after the shift to 39 degrees C. Since ts6 failed to synthesize both plus-strand and minus-strand RNAs after the shift to 39 degrees C, at least one common viral component appears to be required for the synthesis of both minus-strand and plus-strand RNAs.  相似文献   

10.
Aedes albopictus (clone C6/36) cells, which normally grow at 28 degrees C, were maintained at a supraoptimal temperature of 37 degrees C. The effect of continuous heat stress (37 degrees C) on cell growth was analyzed as were the modifications occurring with protein synthesis during short- and long-term heat stress. We observed that cells in lag or exponential growth phase, present inhibition of cell growth, and cells in the lag phase showed more sensitivity to death than cells growing exponentially. During the first hour of exposing the cells to 37 degrees C, they synthesized two heat shock proteins (hsps) of 82 kd and 70 kd, respectively, concomitant with inhibition of normally produced proteins at control temperature (28 degrees C). However, for incubations longer than 2 hr at 37 degrees C, a shift to the normal pattern of protein synthesis occurred. During these transitions, two other hsps of 76 kd and 90 kd were synthesized. Pulse chase experiments showed that the 70-kd hsp is stable at least for 18 hr, when the cells are returned to 28 degrees C. However, if cells were incubated at 37 degrees C, the 70-kd hsp is stable for at least 48 hr. The 70-kd hsp was localized in the cytoplasmic and in the nuclear compartment. Our results indicate a possible role of hsp 70-kd protein in the regulation of cell proliferation.  相似文献   

11.
Treatment of herpes simplex virus type 2 (HSV-2)-infected human fibroblast cells with cytosine arabinoside (ara-C) at 25 microgram/ml resulted in complete inhibition of virus replication. Removal of ara-C after 7 days of treatment ultimately resulted in renewed virus replication, but after a delay of at least 5 days. If however, the temperature was elevated from 37 degrees C to 39.5 to 40 degrees C at the time of ara-C reversal, infectious HSV-2 did not reappear. As long as the cultures were maintained at 39.5 to 40 degrees C (up to at least 128 days), HSV-2 was latent and infectious virus was undetectable. If the temperature was reduced to 37 degrees C at any time during the latent period, infectious virus was always reactivated, but only after a period of incubation at 37 degrees C of a least 11 days. Infectious-center assays performed with latent cultures indicated that only a very small fraction of cells could reactivate virus. The infectious-center titer did not show significant changes during much of the period of latency. This seemed to argue against the possibility that the latent cultures were synthesizing very small amounts of infectious virus. Additional studies were aimed at determining the minimum incubation period at 37 degrees C required to reactivate infectious HSV-2. Latent cultures reduced from 39.5 to 40 degrees C to 37 degrees C for less than 96 h did not yield infectious HSV-2, but those incubated at 37 degrees C for 96 h or more did.  相似文献   

12.
13.
The United Kingdom tissue-adapted bovine rotavirus growing in African green monkey kidney (BSC-1) cells was selected as a model system with which to study the detailed molecular virology of rotavirus replication. Study of the kinetics of infectious virus production revealed a fairly rapid replication cycle, with maximum yield of virus after 10 to 12 h at 37 degrees C. Progeny genome synthesis was first detected during the virus latent period at 2 to 3 h postinfection. Study of the kinetics of viral polypeptide synthesis showed that virus rapidly inhibited cellular polypeptide synthesis such that by 4 h postinfection, only virus-induced polypeptides, 15 of which were detected, were being synthesized. No qualitative changes in the pattern of viral polypeptide synthesis were observed during infection, although, based on kinetic synthesis, three quantitative classes of polypeptides were defined. Pulse-chase analysis revealed three post-translational changes in viral proteins, two of which were shown to be due to glycosylation. Tunicamycin inhibition studies were used to identify the putative non-glycosylated precursors of the two glycoproteins. Comparison of the infected-cell polypeptides with those present in purified virions revealed that mot of the virus-induced proteins were incorporated into virions, with only VP9 being a truly nonstructural protein. Some localization of the various polypeptides within the purified virion was achieved by producing viral cores.  相似文献   

14.
In high-multiplicity infection of human fibroblasts, human cytomegalovirus of WI-38 human diploid cells produced early cell rounding 6 to 24 h after inoculation. This early cell rounding was caused only by inoculation with infectious virions. Inhibitors of protein synthesis, but not DNA inhibitors, prevented this cytopathic effect. Apparently, a new protein is synthesized in infected fibroblasts from about 2 h postinoculation. Infectivity of cell-associated and supernatant infectious virus reached maximal levels at 5 to 7 and 10 days postinoculation, respectively. Synthesis of DNA, infectious virus, complement-fixing antigen, and precipitin antigen all began between 24 and 48 h, with the bulk of synthesis occurring 48 to 96 h postinoculation.  相似文献   

15.
An immunoperoxidase procedure was employed to study the expression of a large-molecular-weight, virus-induced polypeptide (VP175; molecular weight, 175,000) at the light and electron microscopic levels in Vero cells infected with herpes simplex virus type 1 or with tsB2, a DNA-negative, temperature-sensitive mutant of herpes simplex virus type 1. In cells infected with herpes simplex virus type 1 and in cells infected with tsB2 at the permissive temperature (34 degrees C), VP175 was found within the nucleus. The protein was detected as early as 2 h postinfection and, by 3 h postinfection, was generally distributed in a marginated pattern contiguous with, and extending from, the inner lamella of the nuclear membrane. At 6 h postinfection, protein accumulations were dispersed throughout the nucleus, and, by 9 h postinfection, these accumulations tended to be localized in a marginated pattern near the nuclear membrane. It was also noted that, at 9 h postinfection, under permissive conditions, VP175 was not found in association with nucleocapsids or enveloped particles. In contrast, in cells infected with tsB2 at the nonpermissive temperature (39 degrees C) and harvested at 6 or 9 h postinfection, accumulations of VP175 were identified not only within the nucleus, but also within the cytoplasm in the form of annular or globular aggregates. These aggregates consisted of a granular matrix and were not bound by membranes.  相似文献   

16.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

17.
Single cell clones of latently infected mouse neuroblastoma cells were isolated from a culture chronically infected with mouse hepatitis virus in the presence of an antiviral antibody. These cell clones did not produce infections virus or exhibit viral cytopathic effects during cultivation at 32, 37, or 39°C. Infectious virus was isolated from single cell clones via fusion with permissive cells using polyethylene glycol, but not after fusion with inactivated Sendai virus or following treatment with metabolic inhibitors. One cell clone (S-3) from which virus was rescued was negative for viral antigen by immunofluorescence. The S-3 cell clone and no demonstrable virus antigen by complement-fixation tests using cytoplasmic extracts or virus-specified proteins detectable by polyacrylamide gel electrophoresis. The rescued viruses exhibited a temperature dependent growth defect at 32°C and have been classified as cold sensitive mutants. This study suggests that a complete genome of a positive stranded RNA virus can remain latent in infected cells without the expression of detectable virus antigen.  相似文献   

18.
Different batches of bulk vaccine, final bulk at in-process level, finished freeze-dried and reconstituted Japanese encephalitis vaccine were assayed for their stability at temperatures of 22, 37 and 40 degrees C. After ultrazonal purification of 50 times concentrated brain suspension, JE Bulk vaccine was found to be stable for up to 2 years at 4 degrees C, however, the percentage loss in potency (log 10 N antibody titre) after 2.5 years was 24%. Three-times concentrated final bulk showed rapid deterioration by the fourth week at 37 and 40 degrees C. Freeze-dried JE vaccine maintained at 22 degrees C for 28 weeks did not show perceptible deterioration. At 37 degrees C, the same vaccine started showing deterioration (14%) after 8 weeks whereas at 40 degrees C the loss of potency was 24% after 8 weeks. The freeze-dried vaccine was found to be stable for up to 2 weeks duration at 40 degrees C.  相似文献   

19.
A replicated sector-plating procedure was used to isolate 35 induced temperature-sensitive (ts) mutants and one spontaneous ts mutant from a wild-type stock of respiratory syncytial (RS) virus cloned from recent clinical material. Seven of these mutants were ts for plaque formation at 37 degrees C as well as at the restrictive temperature of 39 degrees C. The wild-type strain did not differ markedly from standard laboratory strains of RS virus. It was dependent on exogenous arginine (84 mug/ml) for optimal growth, and was not significantly inhibited by mitomycin C (10 mug/ml). It was sensitive to actinomycin D (2.5 mug/ml) during the early part of the growth phase. A characteristic focal cytopathic effect was obtained in BS-C-1 cells. Staining of infected monolayers by an indirect immunofluorescence procedure revealed a profusion of filamentous processes extending from the plasma membrane, and a similar modification of the surface of infected cells could be visualized by scanning electron microscopy. Filament production was inhibited when certain ts mutants were incubated at 39 degrees C, confirming the virus-specific nature of the phenomenon. Thirty-four of the mutants were classified into three groups by immunofluorescence. Complementation was observed in mixed infection with a single mutant from each group. Nuclear, as well as cytoplasmic, immunofluorescence was detected in RS virus-infected cells using a high-titer bovine anti-bovine RS virus serum. Visualization of nuclear antigen was dependent on the inhibition of cytoplasmic fluorescence obtained when ts mutants in groups I and III were incubated at restrictive temperature.  相似文献   

20.
The growth characteristics and intraspecies host specificity of Heterocapsa circularisquama virus (HcV), a large icosahedral virus specifically infecting the bivalve-killing dinoflagellate H. circularisquama, were examined. Exponentially growing host cells were more sensitive to HcV than those in the stationary phase, and host cells were more susceptible to HcV infection in the culture when a higher percent of the culture was replaced with fresh medium each day, suggesting an intimate relationship between virus sensitivity and the physiological condition of the host cells. HcV was infective over a wide range of temperatures, 15 to 30 degrees C, and the latent period and burst size were estimated at 40 to 56 h and 1,800 to 2,440 infective particles, respectively. Transmission electron microscopy revealed that capsid formation began within 16 h postinfection, and mature virus particles appeared within 24 h postinfection at 20 degrees C. Compared to Heterosigma akashiwo virus, HcV was more widely infectious to H. circularisquama strains that had been independently isolated in the western part of Japan, and only 5.3% of the host-virus combinations (53 host and 10 viral strains) showed resistance to viral infection. The present results are helpful in understanding the ecology of algal host-virus systems in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号