首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.In multicellular eukaryotes, the regulation of gene expression by microRNAs (miRNAs) is critical for biological processes as diverse as cell differentiation and proliferation, apoptosis, metabolism, and development (4). To exert a regulatory function, miRNAs associate with Argonaute proteins to form RNA-induced silencing complexes, which repress translation and trigger the degradation of target mRNAs (4, 10, 16). The extent to which translational repression and degradation contribute to silencing depends on the specific target-miRNA combination; some targets are regulated predominantly at the translational level, whereas others can be regulated mainly at the mRNA level (3). A large-scale proteomic analysis performed in parallel with measurements of mRNA levels showed that for the vast majority of miRNA targets, silencing correlates with changes at both the protein and mRNA levels (1, 27).In animal cells, the degradation of miRNA targets is initiated by deadenylation and decapping, which are followed by the exonucleolytic decay of the mRNA body (2, 3, 9, 11, 12, 17, 19, 24, 30, 31). miRNA-dependent mRNA degradation requires a variety of proteins: an Argonaute and a GW182 protein, the CCR4-NOT deadenylase complex, the decapping enzyme DCP2, and several decapping activators including DCP1, Ge-1, HPat, EDC3, and Me31B (also known as RCK/p54) (3, 6, 9, 12, 19). Several studies previously demonstrated that miRNAs trigger deadenylation and decapping even when the mRNA target is not translated (9, 12, 19, 24, 30, 31), indicating that mRNA decay is not merely a consequence of a primary effect of miRNAs on translation but rather is an independent mechanism by which miRNAs silence gene expression.Although how miRNAs trigger mRNA degradation is well established, the mechanisms driving the inhibition of translation are unclear. Multiple mechanisms have been proposed: the displacement of eukaryotic initiation factor 4E (eIF4E) from the mRNA cap structure, interference with the function of the eIF4F complex, a block of 60S ribosomal subunit joining, or an inhibition of translation elongation (4, 10, 16). Regardless of the precise mechanism, the translational repression of miRNA targets also requires GW182 family proteins (11, 13).GW182 proteins are essential components of the miRNA pathway in animal cells, as their depletion suppresses miRNA-mediated gene silencing (reviewed in references 8 and 13). Recent studies have revealed that the silencing activity of these proteins resides predominantly in a bipartite silencing domain containing the middle and C-terminal regions (14, 22, 33). The precise molecular function of the GW182 silencing domain is not fully understood, yet it is known that the domain is not required for GW182 proteins to interact with Argonaute proteins or to localize to P bodies (3, 14, 22). Furthermore, when the silencing domains of GW182 proteins are artificially tethered to mRNAs, their expression is silenced; therefore, tethering bypasses the requirement for Argonaute proteins and miRNAs (5, 22, 33). These observations suggest that the silencing domains of GW182 proteins exhibit intrinsic silencing activity and therefore likely play a role at the effector step of silencing (13, 14, 22, 33).Here we investigate what role the Drosophila melanogaster GW182 silencing domain plays in the miRNA pathway. Overall, our results reveal that the very C-terminal region of this domain is required for the release of GW182 from silenced mRNPs. Indeed, we unexpectedly found that we could detect D. melanogaster GW182 bound to miRNA targets only in cells depleted of components of the deadenylase complex. These results suggest that GW182 dissociates from Argonaute-1 (AGO1) and miRNA targets at a step of silencing downstream of deadenylation. In contrast, GW182 mutants lacking the C-terminal region remain stably bound to miRNA targets, even in wild-type cells, indicating that this region plays a role in the dissociation of GW182 from effector complexes. We further show that the bipartite silencing domain of GW182 interacts with PABPC1 and interferes with the binding of PABPC1 to eIF4G. The interaction of GW182 with PABPC1 is also required for the degradation of miRNA targets, most likely because the interaction facilitates the recruitment of the CCR4-NOT deadenylase complex. Accordingly, overexpressing PABPC1 suppresses the silencing of miRNA targets. Our findings uncover an unexpected role for PABPC1 in the miRNA pathway.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号