首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

2.
Scattered trees in grass‐dominated ecosystems often act as islands of fertility with important influences on community structure. Despite the potential for these islands to be useful in restoring degraded rangelands, they can also serve as sites for the establishment of fast growing non‐native species. In California oak savannas, native perennial grasses are rare beneath isolated oaks and non‐native annual grasses dominate. To understand the mechanisms generating this pattern, and the potential for restoration of native grasses under oaks, we asked: what are the effects of the tree understory environment, the abundance of a dominant non‐native annual grass (Bromus diandrus), and soils beneath the trees on survival, growth, and reproduction of native perennial grass seedlings? We found oak canopies had a strong positive effect on survival of Stipa pulchra and Poa secunda. Growth and reproduction was enhanced by the canopy for Poa but negatively impacted for Stipa. We also found that Bromus suppressed growth and reproduction in Stipa and Poa, although less so for Stipa. These results suggest the oak understory may enhance survival of restored native perennial grass seedlings. The presence of exotic grasses can also suppress growth of native grasses, although only weakly for Stipa. The current limitation of native grasses to outside the canopy edge is potentially the result of interference from annual grasses under oaks, especially for short‐statured grasses like Poa. Therefore, control of non‐native annual grasses under tree canopies will enhance the establishment of S. pulchra and P. secunda when planted in California oak savannas.  相似文献   

3.
Abstract Invasion by Mediterranean annual grasses, such as Avena L. spp. and Bronms L. spp, is one of the major threats to temperate perennial grassland. This study investigated the effects of annual grasses and their litter on the species composition of a grassland near Burra, South Australia. The placement of annual grass litter on soil samples in the glasshouse decreased the establishment or growth of several exotic annual dicots. In the field the addition of annual grass litter slightly decreased the frequency of Danthonia Lam. & DC. tussocks. Furthermore, litter strongly reduced the species richness from 13 species in plots with no litter to nine species in plots with the highest litter level, mainly by decreasing the frequency of common exotic dicots. Native dicot frequency similarly appeared to be decreased by litter addition. In addition to the negative effects of their litter, annual grasses also directly competed with perennial grasses. The magnitude of the competitive effect varied systematically along a slope, suggesting that other factors such as soil properties may control competitive inter actions. The biomass of annual grasses also tended to increase with the addition of their own litter. This combination of positive and negative feedback mechanisms suggests that brief periods favourable for annual grasses, either through management changes or environmental conditions, can lead to persistent changes in the species composition of the system.  相似文献   

4.
In a greenhouse experiment, we examined the effectiveness of four native cover crops for controlling four exotic, invasive species and increasing success of four western North American grassland species. Planting the annual cover crops, annual ragweed (Ambrosia artemisiifolia) and common sunflower (Helianthus annuus), reduced the biomass of the exotic species cheatgrass (Bromus tectorum), Japanese brome (Bromus japonicus), Canada thistle (Cirsium arvense), and whitetop (Cardaria draba). The annual cover crops also reduced the desired species biomass in competition with the perennial exotics, but either increased or did not affect the desired species biomass in competition with the annual exotics. Planting the perennial cover crops, Canada goldenrod (Solidago canadensis) and littleleaf pussytoes (Antennaria microphylla), rarely inhibited exotic species, but did increase the desired species biomass. Field experiments are needed to test the cover crops under more ecologically relevant conditions, but our results suggested that the annual cover crops may be effective for controlling invasive annuals and for facilitating native perennials.  相似文献   

5.
Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m−2) and native species (0, 150, 300, and 600 viable seeds m−2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.  相似文献   

6.
Early emergence of plant seedlings can offer strong competitive advantages over later-germinating neighbors through the preemption of limiting resources. This phenomenon may have contributed to the persistent dominance of European annual grasses over native perennial grasses in California grasslands, since the former species typically germinate earlier in the growing season than the latter and grow rapidly after establishing. Recently, European perennial grasses have been spreading into both non-native annual and native perennial coastal grass stands in California. These exotic perennials appear to be less affected by the priority effects arising from earlier germination by European annual grasses. In addition, these species interactions in California grasslands may be mediated by increasing anthropogenic or natural soil nitrogen inputs. We conducted a greenhouse experiment to test the effects of order of emergence and annual grass seedling density on native and exotic perennial grass seedling performance across different levels of nitrogen availability. We manipulated the order of emergence and density of an exotic annual grass (Bromus diandrus) grown with either Nassella pulchra (native perennial grass), Festuca rubra (native perennial grass), or Holcus lanatus (exotic perennial grass), with and without added nitrogen. Earlier B. diandrus emergence and higher B. diandrus density resulted in greater reduction in the aboveground productivity of the perennial grasses. However, B. diandrus suppressed both native perennials to a greater extent than it did H. lanatus. Nitrogen addition had no effect on the productivity of native perennials, but greatly increased the growth of the exotic perennial H. lanatus, grown with B. diandrus. These results suggest that the order of emergence of exotic annual versus native perennial grass seedlings could play an important role in the continued dominance of exotic annual grasses in California. The expansion of the exotic perennial grass H. lanatus in coastal California may be linked to its higher tolerance of earlier-emerging annual grasses and its ability to access soil resources amidst high densities of annual grasses.  相似文献   

7.
Infestations of the exotic perennial Spotted knapweed (Centaurea maculosa Lam.) hinder the restoration and management of native ecosystems on droughty, infertile sites throughout the Midwestern United States. We studied the effects of annual burning on knapweed persistence on degraded, knapweed‐infested gravel mine spoils in western Michigan. Our experiment included 48, 4‐m2 plots seeded to native warm‐season grasses in 1999 using a factorial arrangement of initial herbicide and fertility treatments. Beginning in 2003, we incorporated fire as an additional factor and burned half of the plots in late April or May for 3 years (2003–2005). Burning increased the dominance of warm‐season grasses and decreased both biomass and dominance of knapweed in most years. Burning reduced adult knapweed densities in all 3 years of the study, reduced seedling densities in the first 2 years, and reduced juvenile densities in the last 2 years. Knapweed density and biomass also declined on the unburned plots through time, suggesting that warm‐season grasses may effectively compete with knapweed even in the absence of fire. By the end of the study, mean adult knapweed densities on both burned (0.4‐m2) and unburned (1.3‐m2) plots were reduced to levels where the seeded grasses should persist with normal management, including the use of prescribed fire. These results support the use of carefully timed burning to help establish and maintain fire‐adapted native plant communities on knapweed‐infested sites in the Midwest by substantially reducing knapweed density, biomass, and seedling recruitment and by further shifting the competitive balance toward native warm‐season grasses.  相似文献   

8.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

9.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

10.
There is growing interest in the addition of carbon (C) as sucrose or sawdust to the soil as a tool to reduce plant‐available nitrogen (N) and alter competitive interactions among species. The hypothesis that C addition changes N availability and thereby changes competitive dynamics between natives and exotics was tested in a California grassland that had experienced N enrichment. Sawdust (1.2 kg/m) was added to plots containing various combinations of three native perennial bunchgrasses, exotic perennial grasses, and exotic annual grasses. Sawdust addition resulted in higher microbial biomass N, lower rates of net N mineralization and net nitrification, and higher concentrations of extractable soil ammonium in the soil. In the first year sawdust addition decreased the degree to which exotic annuals competitively suppressed the seedlings of Nassella pulchra and, to a lesser extent, Festuca rubra, both native grasses. However there was no evidence of reduced growth of exotic grasses in sawdust‐amended plots. Sawdust addition did not influence interactions between the natives and exotic perennial grasses. In the second year, however, sawdust addition did not affect the interactions between the natives and either group of exotic grasses. In fact, the native perennial grasses that survived the first year of competition with annual grasses significantly reduced the aboveground productivity of annual grasses even without sawdust addition. These results suggest that the addition of sawdust as a tool in the restoration of native species in our system provided no significant benefit to natives over a 2‐year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号