首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In acute experiments on cats, the effects of injections of nitric oxide (NO) donors and an inhibitor of its synthesis into the sympathoexcitatory neuronal structures in the ventrolateral medulla (VLM) were studied to examine their effects on the peripheral mechanisms of the cardiovascular control. Unilateral injections of NO donors, nitroglycerine (1.3–5.2 nmol) or sodium nitroprusside (1.1–4.6 nmol) into the sites of the sympathoexcitatory neurons residing in the VLM induced the lowering of the systemic arterial pressure (SAP) in a dose-depended fashion. Two types of the hypotensive responses have been distinguished. In the first type responses, lowering of the SAP level was mainly due to a decrease in the peripheral vascular resistance (PVR), while the heart rate (HR) and stroke volume (SV) were only slightly reduced. In the second type responses, the drop in SAP level resulted mainly from a decrease in the HR and myocardial contractivity. These effects were induced by the limitation of the descending excitatory influences to the heart and vessels from the VLM sympathoexcitatory systems. An increase in the NO concentrations in the neuronal structures located 2.5–4.5 mm caudally to the trapezold bodies resulted in the first type responses, while that in the sites immediately adjacent to the caudal sympathoinhibitory area (0.5–1.5 mm rostrally to the XIIth cranial nerve roots) was associated with the second type of reactions. Stimulation of the endogenous NO release from the neurons after injections of L-arginine induced the same cardiovascular shifts as exogenic NO did, and attenuation of NO synthesis following injections of NO antagonist L-NMMA into the VLM neuronal structures evoked hemodynamic shifts of a reverse direction. Injections of NO donors inhibited the reflex responses induced by the activation of the carotid sinus receptors. Our data give further evidence for NO involvement in the inhibitory control of the cardiac activity and vascular tone through those VLM sympatoexcitatory neurons, which are involved in the system of central neurogenic cardiovascular control and the activity of which prevent the development of hypertension.Neirofiziologiya/Neurophysiology, Vol. 28, No. 2/3, pp. 111–120, March–June, 1996.  相似文献   

2.
The association of [3H]-Met-enkephalin with synaptosomes isolated from rat brain cortex, when incubated for 30 min at 25°C follows a sigmoid path with a Hill coefficient h=1.25±0.04. Binding of Met-enkephalin into synaptosomes was saturable, with an apparent binding constant of 8.33±0.48 nM. At saturation, Met-enkephalin specific receptors corresponded to 65.5±7.2 nmol/mg synaptosomal protein. The Hill plot in combination with the biphasic nature of the curve to obtain the equilibrium constant, showed a moderate degree of positive cooperativity in the binding of Met-enkephalin into synaptosomes of at least one class of high affinity specific receptors. Met-enkephalin increased the lipid fluidity of synaptosomal membranes labelled with 1,6-diphenyl-1,3,5-hexatriene (DPH), as indicated by the steady-state fluorescence anisotropy [(ro/r)–1]–1. Arthenius-type plots of [(ro/r)–1]–1 indicated that the lipid separation of the synaptosomal membranes at 23.4±1.2°C was perturbed by Met-enkephalin such that the temperature was reduced to 15.8±0.8°C. Naloxone reversed the fluidizing effect of Met-enkephalin, consistent with the receptor-mediated modulation of membrane fluidity. Naloxone alone had no effect on membrane fluidity. NO release and cGMP production by NO-synthase (NOS) and soluble guanylate cyclase (sGC), both located in the soluble fraction of synaptosomes (synaptosol) were decreased by 82% and 80% respectively, after treatment of synaptosomes with Met-enkephalin (10–10–10–4 M). These effects were reversed by naloxone (10–4 M) which alone was ineffective in changing NO and cGMP production. We propose that Met-enkephalin achieved these effects through receptor mediated perturbations of membrane lipid structure and that inhibition of the L-Arg/NO/cGMP pathway in the brain may result in the antinociceptive effects of Met-enkephalin.  相似文献   

3.
Nitric oxide (NO) plays a key role in body temperature (Tb) regulation of mammals, acting on the brain to stimulate heat loss. Regarding birds, the putative participation of NO in the maintenance of Tb in thermoneutrality or during heat stress and the site of its action (periphery or brain) is unknown. Thus, we tested if NO participates in the maintenance of chicks' Tb in those conditions. We investigated the effect of intramuscular (im; 25, 50, 100 mg/kg) or intracerebroventricular (icv; 22.5, 45, 90, 180 µg/animal) injections of the non selective NO synthase inhibitor L-NAME on Tb of 5-day-old chicks at thermoneutral zone (TNZ; 31–32 °C) and under heat stress (37 °C for 5–6 h). We also verified plasma and diencephalic nitrite/nitrate levels in non-injected chicks under both conditions. At TNZ, 100 mg/kg (im) or 45, 90, 180 µg (icv) of L-NAME decreased Tb. A significant correlation between Tb and diencephalic, but not plasma, nitrite/nitrate levels was observed. Heat stress-induced hyperthermia was inhibited by all tested doses of L-NAME (im and icv). Tb was correlated neither with plasma nor with diencephalic nitrite/nitrate levels during heat stress. These results indicate the involvement of brain NO in the maintenance of Tb of chicks, an opposite action of that observed in mammals, and may modulate hyperthermia.  相似文献   

4.
Summary Subterranean clover plants were grown as swards (about 2000 plants/m2) under controlled conditions with N provided either by N2-fixation (NO 3 withheld) or by assimilation of NO 3 (NO 3 supplied). Crop growth rates were measured by dry matter sampling over periods of up to 70 days at PPFD values of 400–1000 mole quanta/m2/s. When NO 3 was supplied from sowing the swards grew more rapidly than when the swards were not supplied with NO 3 and plants had to establish an N2-fixing apparatus. When inter-plant competition was reduced within the sward, a difference in growth rate in favour of NO 3 -fed plants continued for at least 50 days. When however, a closed canopy was allowed to form, the NO 3 -fed swards had more dry weight than the N2-fed swards at the time of canopy closure but thereafter the two swards grew at similar rates at light flux densities of above about 800 mole quanta/m2/s. At light flux densities of about 400 mole quanta/m2/s N2-fed swards had a growth rate 70–80% of that of NO 3 -fed plants. NO 3 -fed plants had a higher organic N content than did N2-fed plants under all conditions.  相似文献   

5.
Gasche  R.  Papen  H. 《Plant and Soil》2002,240(1):67-76
In order to evaluate differences in the magnitude of NO and NO2 flux rates between soil areas in direct vicinity to tree stems and areas of increasing distance to tree stems, we followed in 1997 at the Höglwald Forest site with a fully automated measuring system a complete annual cycle of NO and NO2 fluxes from soils of an untreated spruce stand, a limed spruce strand, and a beech stand using at each stand measuring chambers which were installed onto the soils in such a way that they formed a stem to stem gradient. Flux data obtained since the end of 1993 from measuring chambers placed at the interstem areas of the stands, which had been used for the calculation of the long year annual mean of NO and NO2 flux rates from soils of the stands, are compared to both (a) those obtained from the interstem chambers in 1997 and (b) those from the stem to stem gradient chambers. Daily mean NO fluxes obtained in 1997 were in a range of 0.3 – 280.1 g NO-N m–2 h–1 at the untreated spruce stand, 0.5 – 273.2 g NO-N m–2 h–1 at the limed spruce stand and 0.5 - 368.8 g NO-N m–2 h–1 at the beech stand, respectively. Highest NO emission rates were observed during summer, lowest during winter. Daily mean NO2 fluxes were in a range of –83.1 – 7.6 g NO2-N m–2 h–1 at the untreated spruce stand, -85.1 – 2.1 g NO2-N m–2 h–1 at the limed spruce stand and –77.9 to –2.0 g NO2-N m–2 h–1 at the beech site, respectively. As had been observed for the years 1994–1996, also in 1997 NO emission rates were highest at the untreated spruce stand and lowest at the beech stand and liming of a spruce stand resulted in a significant decrease in NO emission rates. For NO2 no marked differences in the magnitude of flux rates were found between the three different stands. Results obtained from the stem to stem gradient experiments revealed that at all stands studied NO emission rates were significantly higher (between 1.6- and 2.6-fold) from soil areas close to the tree stems and decreased – except at the beech stand - with increasing distance from the stems, while for NO2 deposition no marked differences were found. Including the contribution of soil areas in direct vicinity to the beech stems in the estimation of the annual mean NO source strength revealed that the source strength has been underestimated by 40% in the past.  相似文献   

6.
NO 2 efflux and its regulation have been studied in the cyanobacterium Nostoc MAC. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU), carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), sodium azide, p-chloromercuribenzoate (PCMB), and dicyclohexylcarbodiimide (DCCD), a specific inhibitor of bacterial ATPase, inhibited the NO 2 efflux activity singificantly. No NO 2 efflux activity was observed under dark-aerobic as well as under dark-anaerobic conditions; however, the addition of ATP resulted in NO 2 efflux even under dark-aerobic condition. Maximum NO 2 efflux activity was observed when NO 3 served as the sole nitrogen source. However, NH 4 + ions inhibited the NO 2 efflux activity when both NO 3 and NH 4 + wer simulatneously available to the cells. The NO 2 efflux was freed from NH 4 + repression by l-methionine-dl-sulfoximine (MSX), an irreversible inhibitor of glutamine synthetase (GS). Chloramphenicol, a protein synthesis inhibitor, inhibited the derepression of NO 2 efflux system when NH 4 + -incubated cells were transferred to NO 3 medium. Tungstate-treated cells lacking functional NO 3 reductase but having NO 3 uptake activity also lacked NO 2 efflux activity. These results suggest that (i) NO 2 efflux in Nostoc MAC is NO 3 dependent and an energy-dependent process that can be regulated at the levels of NO 3 uptake and NO 3 reductase; (ii) NO 2 efflux system is NH 4 + repressible; however, the product of NH 4 + assimilation via GS is being required for repression to occur; (iii) de novo protein synthesis is required for derepression of the NO 2 efflux system; and (iv) the catalytic activity of NO 2 reductase also seems to play an important role in the regulation of NO 2 efflux system.  相似文献   

7.
Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). l-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p < 0.05) and a 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53–7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

8.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

9.
Summary During 1976 through 1978, 10N treatments (combinations of N application times and rates) were used in a corn study. Those treatments created different levels of soil NO 3 –N content that were well-suited to a study of the influence of residual NO 3 –N and applied N on soybean yield. In April 1979 we applied ammonium nitrate at rates of 0, 75, or 150 kg N/ha to three subplots formed from each of the whole plots (previous N treatment plots). With N fertilization in 1979, seed yield increased where the residual NO 3 –N amount was less than 190 kg/ha but decreased where the residual amount was greater than 190 kg/ha. As the NO 3 –N content in the soil increased by 1 kg/ha, the soybean yield increase due to N fertilization in 1979 decreased by approximately 4 kg/ha.Contribution no. 82-368-J, Dep. of Agronomy, Kansas Agric. Exp. Stn., Manhattan, KS 66506, USA  相似文献   

10.
Rates of nitrification and organic C production were determined in batch and chemostat cultures of marine nitrifying bacteria; two NH 4 + -oxidizing species and one NO 2 -oxidizing spezies. With increasing age in batch cultures and with decreasing flow rates in chemostats, cellular organic C and N concentrations declined while the intracellular ratio of C:N remained constant. With decreasing flow rates in chemostats, there was a reduction in (a) carboxylating enzyme activity per unit of cellular organic C (the potential for chemoautotrophic CO2 fixation), and (b) the yield of organic C. For both NH 4 + and NO 2 oxidizers, rates of nitrification and C yield were lowest at very slow chemostat growth rates, when compared with optimal growth rates in batch cultures. For both NH 4 + and NO 2 -oxidizing species, the stoichiometric relationship between nitrification and organic C production did not remain constant and appeared to be dependent on the availability of the inorganic N substrate. The organic C yield from NH 4 + oxidation and hence the free energy efficiency declined with increasing age in batch cultures and with decreasing flow rates in chemostats. The C yield from NO 2 oxidation and the free energy efficiency at slow chemostat growth rates was also lower than that at the optimal growth rate in batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号