首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

2.
Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is a natural bioactive phenolic acid potentially valuable as a pharmaceutical raw material owing to its diverse pharmacological activities. Corynebacterium glutamicum forms PCA as a key intermediate in a native pathway to assimilate shikimate/quinate through direct conversion of the shikimate pathway intermediate 3-dehydroshikimate (DHS), which is catalyzed by qsuB-encoded DHS dehydratase (the DHS pathway). PCA can also be formed via an alternate pathway extending from chorismate by introducing heterologous chorismate pyruvate lyase that converts chorismate into 4-hydroxybenzoate (4-HBA), which is then converted into PCA catalyzed by endogenous 4-HBA 3-hydroxylase (the 4-HBA pathway). In this study, we generated three plasmid-free C. glutamicum strains overproducing PCA based on the markerless chromosomal recombination by engineering each or both of the above mentioned two PCA-biosynthetic pathways combined with engineering of the host metabolism to enhance the shikimate pathway flux and to block PCA consumption. Aerobic growth-arrested cell reactions were performed using the resulting engineered strains, which revealed that strains dependent on either the DHS or 4-HBA pathway as the sole PCA-biosynthetic route produced 43.8 and 26.2 g/L of PCA from glucose with a yield of 35.3% and 10.0% (mol/mol), respectively, indicating that PCA production through the DHS pathway is significantly efficient compared to that produced through the 4-HBA pathway. Remarkably, a strain simultaneously using both DHS and 4-HBA pathways achieved the highest reported PCA productivity of 82.7 g/L with a yield of 32.8% (mol/mol) from glucose in growth-arrested cell reaction. These results indicated that simultaneous engineering of both DHS and 4-HBA pathways is an efficient method for PCA production. The generated PCA-overproducing strain is plasmid-free and does not require supplementation of aromatic amino acids and vitamins due to the intact shikimate pathway, thereby representing a promising platform for the industrial bioproduction of PCA and derived chemicals from renewable sugars.  相似文献   

3.
Cellulase enzyme was produced by a selected strain of Aspergillus niger isolated from deteriorated wood and grown on different carbon sources. Filter paper gave the highest yield, followed by carboxymethyl cellulose (CMC). Cellobiose as well as glucose gave a low yield, while the yield from lactose was negligible. The concentration of filter paper cellulose that induced the maximum yield of the enzyme was 1%. Both soluble cellulose (CMC) and cotton cellulose treated with phosphoric acid (swollen) were easily hydrolyzed by cellulase; an increase in cellulase concentration lead to more hydrolysis of CMC and gave linearity in the reaction velocity. At certain concentrations of the enzyme, increase in CMC concentration, (up to 1%) resulted in more reducing sugar. Beyond this point no more hydrolysis occur.  相似文献   

4.

Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  相似文献   

5.
Various yeast strains were screened for production of 3-hydroxybutyric acid (3-HBA) from 1,3-butanediol (1,3-BD) by a resting cell system. Many yeasts were found to oxidize 1,3-BD to 3-HBA. Among them, Hansenula anomala IFO 0195 produced (S)-(+)-3-HBA of the highest optical purity. Reaction temperature and addition of glucose were significantly effective on the optical .purity and production of the acid. When resting cells of this strain were incubated at 27°C in an optimal reaction mixture containing 60.0 mg/ml 1,3-BD, 2.0% CaC03, and 1.0% glucose, 26.7 mg/ml of 3-HBA were produced with 88% enantiomer excess for 2 days. Dominant accumulation of (S)-(+)-3-HBA might be due to enantioselective degradation of (R)-(-)-3-HBA, though both (S)-(+)- and (R)-(-)-1,3-BD are oxidized by the strain.  相似文献   

6.
Summary Resting cells of the coryneform strain NTB-1, previously incorrectly classified as Alcaligenes denitrificans NTB-1, quantitatively converted 4-chlorobenzoate (4-CBA) to 4-hydroxybenzoate (4-HBA) under strict anaerobic conditions in the presence of ferricyanide or nitrate. 4-HBA formation was enhanced by supplying anaerobic cells with glucose as an energy source. Using permeabilized cells it was shown that energy is not needed to drive the energy-dependent uptake of 4-CBA but also to convert 4-CBA into 4-HBA. In extracts it was subsequently demonstrated that a coenzymeA-thioester of 4-CBA is involved in the metabolism of 4-CBA. Offprint requests to: P. E. J. Groenewegen  相似文献   

7.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   

8.
A bacterial strain capable of utilizing a mixture containing 2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic (4-HBA) acid was isolated through enrichment from a soil sample. Based on 16SrDNA sequencing, the microorganism was identified as Acinetobacter calcoaceticus. The sequence of biodegradation of the three isomers when provided as a mixture (0.025%, w/v each) was elucidated. The dihydroxylated metabolites formed from the degradation of 2-HBA, 3-HBA and 4-HBA were identified as catechol, gentisate and protocatechuate, respectively, using the cell-free supernatant and cell-free crude extracts. Monooxygenases and dioxygenases that were induced in the cells of Acinetobacter calcoaceticus in response to growth on mixture containing 2-HBA, 3-HBA and 4-HBA could be detected in cell-free extracts. These data revealed the pathways operating in Acinetobacter calcoaceticus for the sequential metabolism of monohydroxybenzoate isomers when presented as a mixture.  相似文献   

9.
A β-glucosidase from Clostridium cellulovorans (CcBG) was fused with one of three different types of cellulases from Clostridium thermocellum, including a cellulosomal endoglucanase CelD (CtCD), a cellulosomal exoglucanase CBHA (CtCA) and a non-cellulosomal endoglucanase Cel9I (CtC9I). Six bifunctional enzymes were constructed with either β-glucosidase or cellulase in the upstream. CtCD-CcBG showed the favorable specific activities on phosphoric acid swollen cellulose (PASC), an amorphous cellulose, with more glucose production (2 folds) and less cellobiose accumulation (3 folds) when compared with mixture of the single enzymes. Moreover, CtCD-CcBG had significantly improved thermal stability with a melting temperature (Tm) of 10.9 °C higher than that of CcBG (54.5 °C) based on the CD unfolding experiments. This bifunctional enzyme is thus useful in industrial application to convert cellulose to glucose.  相似文献   

10.
以1株分离于北大仓白酒大曲的产纤维素酶真菌M1为材料,对其进行了形态及分子生物学鉴定;纯化并研究了其纤维素酶的酶学性质。以真菌ITS1/ITS4通用引物,扩增真菌M1的rDNA ITS序列,再与GenBank中其他菌株rDNA ITS序列进行比对,使用Mega5.0软件,采用最大似然法进行聚类分析。结果显示,该真菌同已经报道的Fusarium oxysporim strain Bt3聚为一类,一致率达99%,与形态学方法鉴定一致,命名为Fusarium oxysporum M1。该菌具有很高纤维素酶活力,FPA和CMCA分别高达16.84 IU/mL和35.31 IU/mL。经过发酵条件优化酶活性进一步提高。经硫酸铵分级分离、疏水和离子交换层析,纯化了该菌纤维素酶,纯化倍数高达17.97倍,得率为3.676%,SDS-PAGE分析表明,该纤维素酶分子量达60 k Da。本研究为进一步研究该酶高效催化机理及实际应用提供参考。  相似文献   

11.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

12.
Reducing cellulase cost remains a major challenge for lignocellulose to fuel and chemical industries. In this study, mutants of a novel wild-type cellulolytic fungal strain Talaromyces pinophilus OPC4-1 were developed by consecutive UV irradiation, N-methyl-N`-nitro-N-nitrosoguanidine (NTG) and ethylmethane sulfonate (EMS) treatment. A potential mutant EMM was obtained and displayed enhanced cellulase production. Using Solka Floc cellulose as the substrate, through fed-batch fermentation, mutant strain T. pinophilus EMM generated crude enzymes with an FPase activity of 27.0 IU/mL and yield of 900 IU/g substrate. When corncob powder was used, strain EMM produced crude enzymes with an FPase activity of 7.3 IU/mL and yield of 243.3 IU/g substrate. In addition, EMM crude enzymes contained 29.2 and 16.3 IU/mL β-glucosidase on Solka Floc cellulose and corncob power, respectively. The crude enzymes consequently displayed strong biomass hydrolysis performance. For corncob hydrolysis, without supplement of any commercial enzymes, glucose yields of 591.7 and 548.6 mg/g biomass were obtained using enzymes produced from Solka Floc cellulose and corncob powder, respectively. It was 553.9 mg/g biomass using the commercial enzyme mixture of Celluclast 1.5 L and Novozyme 188. Strain T. pinophilus EMM was therefore a potential fungus for on-site enzyme production in biorefinery processes.  相似文献   

13.
Candida antarctica lipase B (CALB) and C. antarctica lipase B fused to a cellulose-binding domain (CBD-CALB) were expressed functionally in the methylotrophic yeast Pichia pastoris. The cellulose-binding domain originates from cellulase A of the anaerobic rumen fungus Neocallimastix patriciarum. The genes were fused to the α-factor secretion signal sequence of Saccharomyces cerevisiae and placed under the control of the alcohol oxidase gene (AOX1) promoter. The recombinant proteins were secreted into the culture medium reaching levels of approximately 25 mg/L. The proteins were purified using hydrophobic interaction chromatography and gel filtration with an overall yield of 69%. Results from endoglycosidase H digestion of the proteins showed that CALB and CBD-CALB were N-glycosylated. The specific hydrolytic activities of recombinant CALB and CBD-CALB were identical to that reported for CALB isolated from its native source. The fusion of the CBD to the lipase resulted in a greatly enhanced binding toward cellulose for CBD-CALB compared with that for CALB.  相似文献   

14.
Three strains of Clostridium thermocellum obtained from various sources were found to have nearly identical deoxyribonucleic acid guanosine plus cytosine contents that ranged from 38.1–39.5 mole-%. All strain examined fermented only cellulose and cellulose derivatives, but not glucose, or xylose or other sugars. The principal cellulose fermentation products were ethanol, lactate, acetate, hydrogen and carbon dioxide. Growth of C. thermocellum on cellulose resulted in the production of extracellular cellulase that was non-oxygen labile, was thermally stable at 70° C for 45 min and adsorbed strongly on cellulose. Production of cellulase during fermentation correlated linearly with growth and cellulose degradation. Both the yield and specific activity of crude cellulase varied considerably with the specific growth substrates. Highest cellulase yield was obtained when grown on native cellulose, -cellulose and low degree of polymerization cellulose but not carboxymethylcellulose or other carbohydrate sources. Cellulase activity was not detected when cells were grown on cellobiose. Crude extracellular protein preparations lacked proteolytic and cellobiase activity. The pH and temperafure optima for endoglucanase activity were 5.2 and 65° C, respectively, while that of the exoglucanase activity were 5.4 and 64° C, respectively. The specific activity at 60° c for exoglucanase and endoglucanase of crude cellulase obtained from cells grown on cellulose (MN 300) was 3.6 moles reducing sugar equivalents released per h (unit)/mg of protein and 1.5 mole reducing sugar equivalent released per min (unit)/mg of protein, respectively. The yield of endoglucanase was 125 units per g of cellulose MN 300 degraded and that of exoglucanase was 300 units per g of cellulose MN 300 degraded. Glucose and cellobiose were the hydrolytic end products of crude cellulase action on cellulose, cellotraose and cellotriose in vitro.  相似文献   

15.
From 22,791 mutants of a cellulase hyper-producing strain of Trichoderma reesei (Hypocrea jecorina), ATCC66589, as the parent, we selected two mutants, M2-1 and M3-1, that produce cellulases in media containing both cellulose and glucose. The mutation enabled the mutants to produce cellulases, which were measured as p-nitrophenyl β-d-lactopyranoside-hydrolyzing activities, in media with glucose as a sole carbon source, although M2-1 exhibited different sensitivities to glucose from M3-1. When the mutants were grown for 8 days on a medium with cellulose as a sole carbon source, the filter-paper-degrading activities (FPAs) per gram of cellulose were 257 and 281 U for M2-1 and M3-1, respectively, values that were 1.1–1.2 times higher than that of the parental strain. Cellulase production by M2-1 and M3-1 on a medium with a continuously fed mixture of glucose and cellobiose resulted in 214 and 210 U of FPA/gram carbon sources, respectively, whereas less efficient production (140 U of FPA/gram carbon source) was achieved by the parental strain. The improved cellulase productivity of the mutants allows us to use glucose as a carbon source for efficient on-site production of cellulases with quality/quantity-controlled feeding of soluble carbon sources and inducers.  相似文献   

16.
The production of norovirus virus‐like particles (NoV VLPs) displaying NY‐ESO‐1 cancer testis antigen in Pichia pastoris BG11 Mut+ has been enhanced through feed‐strategy optimization using a near‐infrared bioprocess monitor (RTBio® Bioprocess Monitor, ASL Analytical, Inc.), capable of monitoring and controlling the concentrations of glycerol and methanol in real‐time. The production of NoV VLPs displaying NY‐ESO‐1 in P. pastoris has potential as a novel cancer vaccine platform. Optimization of the growth conditions resulted in an almost two‐fold increase in the expression levels in the fermentation supernatant of P. pastoris as compared to the starting conditions. We investigated the effect of methanol concentration, batch phase time, and batch to induction transition on NoV VLP‐NY‐ESO‐1 production. The optimized process included a glycerol transition phase during the first 2 h of induction and a methanol concentration set point of 4 g L?1 during induction. Utilizing the bioprocess monitor to control the glycerol and methanol concentrations during induction resulted in a maximum NoV VP1‐NY‐ESO‐1 yield of 0.85 g L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:518–526, 2016  相似文献   

17.
A gene encoding cellobiose dehydrogenase (VvCDH) from Volvariella volvacea was successfully expressed in Pichia pastoris with codon optimization using its native signal sequence. VvCDH had optimum pH and temperature at 5.5 and 60 °C respectively and showed a broad range of pH stability between 5 and 8. Kinetic analysis showed that the best substrate is cellobiose and that the Km for celloolgosaccharides increases with substrate length. Moreover, lactose is also efficiently oxidized, but glucose and maltose are poor substrates. A large amount of gluconic acid was generated and the overall hydrolysis yield was increased when adding VvCDH to Trichoderma reesei D-86271 enzymatic cocktail during hydrolysis of cellulose substrates, indicating VvCDH involved in the enzymatic cellulose saccharification. VvCDH shows some different enzymatic properties from basidiomycetous CDHs and can be supplemented to T. reesei cellulase cocktail for commercial application.  相似文献   

18.
Biodegradation of cellulose involves synergistic action of the endoglucanases, exoglucanases and β-glucosidases in cellulase. However, the yield of glucose is limited by the lack of β-glucosidase to hydrolyze cellobiose into glucose. In this study, β-glucosidase as a supplemental enzyme along with cellulase are co-immobilized on a pHresponsive copolymer, poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB, where MAA is α-methacrylic acid, DMAEMA is 2-dimethylaminoethyl methacrylate and BMA is butyl methacrylate). The thermal and storage stabilities of PMDB with immobilized enzymes are improved greatly, compared with those of free cellulase. Biodegradation of cellulose is carried out in a pH-responsive recyclable aqueous two-phase system composed of poly (AA-co- DMAEMA-co-BMA) (abbreviated PADB 3.8, where AA is acrylic acid) and PMDB. Insoluble substrate and PMDB with immobilized cellulase and β-glucosidase (Celluclast 1.5L FG and Novozyme 188, respectively) were biased to the bottom phase, while the product was partitioned to the top phase in the presence of 40 mM (NH4)2SO4. When the degradation reaction of cellulose is carried out with PMDB containing immobilized cellulase and β-glucosidase, the concentration of glucose reaches 4.331 mg/mL after 108 h. The yield of glucose is 50.25% after PMDB containing the immobilized enzymes is recycled five times.  相似文献   

19.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

20.
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号