首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
2.
Proteome analysis of soybean roots subjected to short-term drought stress   总被引:4,自引:0,他引:4  
Drought is one of the most important constraints on the growth and productivity of many crops, including soybeans. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we carried out a proteome analysis in combination with physiological analyses of soybean roots subjected to severe but recoverable drought stress at the seedling stage. Drought stress resulted in the increased accumulation of reactive oxygen species and subsequent lipid peroxidation. The proline content increased in drought-stressed plants and then decreased during the period of recovery. The high-resolution proteome map demonstrated significant variations in about 45 protein spots detected on Comassie briliant blue-stained 2-DE gels. Of these, 28 proteins were identified by mass spectrometry; the levels of 5 protein spots were increased, 21 were decreased and 2 spots were newly detected under drought condition. When the stress was terminated by watering the plants for 4 days, in most cases, the protein levels tended towards the control level. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and nitrogen metabolism, cell wall modification, signal transduction, cell defense and programmed cell death, and they contribute to the molecular mechanism of drought tolerance in soybean plants. Analysis of protein expression patterns revealed that proteins associated with osmotic adjustment, defense signaling and programmed cell death play important roles for soybean plant drought adaptation. The identification of these proteins provides new insight that may lead to a better understanding of the molecular basis of the drought stress responses.  相似文献   

3.
4.
Acetaldehyde and ethanol biosynthesis in leaves of plants   总被引:6,自引:4,他引:2       下载免费PDF全文
Leaves of terrestrial plants are aerobic organs, and are not usually considered to possess the enzymes necessary for biosynthesis of ethanol, a product of anaerobic fermentation. We examined the ability of leaves of a number of plant species to produce acetaldehyde and ethanol anaerobically, by incubating detached leaves in N2 and measuring headspace acetaldehyde and ethanol vapors. Greenhouse-grown maize and soybean leaves produced little or no acetaldehyde or ethanol, while leaves of several species of greenhouse-grown woody plants produced up to 241 nanograms per milliliter headspace ethanol in 24 hours, corresponding to a liquid-phase concentration of up to 3 milligrams per gram dry weight. When leaves of 50 plant species were collected in the field and incubated in N2, all higher plants produced acetaldehyde and ethanol, with woody plants generally producing greater amounts (up to 1 microgram per milliliter headspace ethanol concentration). Maize and soybean leaves from the field produced both acetaldehyde and ethanol. Production of fermentation products was not due to phylloplane microbial activity: surface sterilized leaves produced as much acetaldehyde and ethanol as did unsterilized controls. There was no relationship between site flooding and foliar ethanol biosynthesis: silver maple and cottonwood from upland sites produced as much acetaldehyde and ethanol anaerobically as did plants from flooded bottomland sites. There was no relationship between flood tolerance of a species and ethanol biosynthesis rates: for example, the flood intolerant species Quercus rubra and the flood tolerant species Quercus palustris produced similar amounts of ethanol. Cottonwood leaves produced more ethanol than did roots, in both headspace and enzymatic assays. These results suggest a paradox: that the plant organ least likely to be exposed to anoxia or hypoxia is rich in the enzymes necessary for fermentation.  相似文献   

5.
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.  相似文献   

6.
This article reviews the contribution made by functional electronmicroscopy towards identifying and understanding the reactionsof plant roots and shoots to anaerobic stress. Topics examinedinclude: (1) unexpected hypersensitivity, rather than hyper-resistance,to anoxia of root tips of flooding-tolerant plants; (2) protective,rather than damaging, effects of a stimulated energy metabolism(glycolysis and fermentation) under anaerobic conditions; (3)the concept of two main strategies of plant adaptation to anaerobicenvironments, namely avoidance of anaerobiosis on the wholeplant level, termed ‘apparent’ tolerance, and metabolicadaptation at the cellular and molecular levels, termed ‘true’tolerance; (4) the importance of protein synthesis during hypoxiaand anoxia for enhanced energy production and metabolic adaptation;(5) a general adaptive syndrome in plants to stress at the ultrastructurallevel and a possible molecular mechanism for its realizationunder anoxia; (6) the physiological role of anaerobically synthesizedlipids and nitrate as alternative electron acceptors in an oxygen-freemedium; and (7) the selection of cell lines derived from calluscultures that possess enhanced tolerance to anoxia and can regeneratewhole plants with improved tolerance of soil waterlogging.  相似文献   

7.
Waterlogging or flooding are frequently or constitutively encountered by many plant species. The resulting reduction in endogenous O2 concentration poses a severe threat. Numerous adaptations at the anatomical, morphological and metabolic level help plants to either escape low oxygen conditions or to endure them. Formation of aerenchyma or rapid shoot elongation are escape responses, as is the formation of adventitious roots. The metabolic shift from aerobic respiration to anaerobic fermentation contributes to a basal energy supply at low oxygen conditions. Ethylene plays a central role in hypoxic stress signaling, and G proteins have been recognized as crucial signal transducers in various hypoxic signaling pathways. The programmed death of parenchyma cells that results in hypoxia-induced aerenchyma formation is an ethylene response. In maize, aerenchyma are induced in the absence of ethylene when G proteins are constitutively activated. Similarly, ethylene induced death of epidermal cells that cover adventitious roots at the stem node of rice is strictly dependent on heterotrimeric G protein activity. Knock down of the unique Gα gene RGA1 in rice prevents epidermal cell death. Finally, in Arabidopsis, induction of alcohol dehydrogenase with resulting increased plant survival relies on the balanced activities of a small Rop G protein and its deactivating protein RopGAP4. Identifying the general mechanisms of G protein signaling in hypoxia adaptation of plants is one of the tasks ahead.Key words: submergence, hypoxia, ethylene, G protein, reactive oxygen species, H2O2  相似文献   

8.
Salinity and waterlogging are two stresses which in nature often occur simultaneously. In this work, effects of combined waterlogging and salinity stresses are studied on the anatomical alteration, changes of enzymatic antioxidant system and lipid peroxidation in Mentha aquatica L. plants. Seedlings were cultured in half-strength Hoagland medium 50 days after sowing, and were treated under combination of three waterlogging levels (well drained, moderately drained and waterlogging) and NaCl (0, 50, 100, 150 mM) for 30 days. Moderately drained and waterlogging conditions induced differently aerenchyma formation in roots of M. aquatica salt-treated and untreated plants. Moreover, stele diameter and endodermis layer were also affected by salt stress and waterlogging. Salt stress significantly decreased growth, relative water content (RWC), protein level, catalase (CAT) and polyphenol oxidase (PPO) activities, and increased proline content, MDA content, H2O2 level and activities of superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Waterlogging in salt-untreated plants increased significantly growth parameters, RWC, protein content, antioxidant enzyme activity, and decreased proline content, H2O2 and MDA levels. In salt-treated plant, waterlogging caused strong induction of antioxidant enzymes activities especially at severe stress condition. These results suggest M. aquatica is a waterlogging tolerant plant due to significant increase of antioxidant activity, membrane stability and growth under water stress. High antioxidant capacity under waterlogging can be a protective strategy against oxidative damage, and help to salt stress alleviation.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号