首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing multi-color FISH-based technologies to score all 24 chromosomes in single cells within a three-day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found to be aneuploid, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate the feasibility of a full karyotype analysis of individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.  相似文献   

2.
A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.  相似文献   

3.
The positions of chromosomes 18 and X fluorescence in situ hybridization signals were analyzed in blastomeres generated from human in vitro fertilization 3- to 4-day-old embryos after preimplantation screening of aneuploidy of chromosomes 13, 16, 18, 21, 22, X, and Y. Fluorescent signal localization compared with a three-dimensional sphere model of random signal distribution revealed significant differences, providing evidence of peripheral localization of chromosome 18 in aneuploid (p=0.0013) and aneuploid/euploid blastomeres (p=0.0011). No differences were found in localization of chromosome 18 in euploid and in chromosome X in euploid and aneuploid blastomeres.  相似文献   

4.
This report is a retrospective study of preimplantation embryos diagnosed with monosomy for chromosomes 13, 15, 16, 18, 21, 22, X and Y on day 3 to determine the rate of true positives, false positives and/or mosaicism and to assess if these embryos are suitable for in vitro fertilization (IVF) transfer. In a one year period, 80 patients went through preimplantation genetic diagnosis for aneuploidy screening (PGD-AS). Monosomy was diagnosed in 51 embryos. Fluorescence in situ hybridization (FISH) was then performed on the blastomeres at day 5-7 with commercially available probes using the same probe set that initially identified monosomy for chromosomes 13, 16, 21 and 22 or chromosomes 15, 18, X and Y. Based on FISH analysis, the monosomy diagnosed during routine PGD-AS analysis was confirmed in 17 of the 51 embryos. A euploid result for the specific chromosomes tested was observed in 16 of the 51 embryos while mosaicism was found in the remaining 18 embryos. This results in an estimated false positive rate of 3.8% for a diagnosis of monosomy. Reanalysis of these embryos demonstrates that the majority of monosomy diagnoses represents true monosomy or mosaicism and should be excluded for transfer in IVF. Furthermore, improved understanding from recent emerging data regarding the fate of oocytes in women with advanced maternal age undergoing IVF to the development of early embryos may provide a valuable insight into the mechanism of chromosome mosaicism.  相似文献   

5.
Comparative genomic hybridization (CGH) is an indirect DNA-based test which allows for the accurate analysis of aneuploidy involving any of the 24 types of chromosomes present (22 autosomes and the X and Y sex chromosomes). Traditionally, embryos have been screened using fluorescence in situ hybridization (FISH)--a technique that was limited in the number of chromosomes able to be identified in any one sample. Early CGH reports on aneuploidy in preimplantation embryos showed that any of the 24 chromosomes could be involved and so FISH methods were going to be ineffective in screening out abnormal embryos. Our results from routine clinical application of array CGH in preimplantation genetic diagnosis (PGD) patients confirm previous reports on patterns of chromosomal contribution to aneuploidy. The pregnancy outcomes following embryo transfer also indicate that despite the requirement to freeze embryos, rates are encouraging, and successful ongoing pregnancies can be achieved.  相似文献   

6.
Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular.  相似文献   

7.
Karyotypic studies of aborted fetuses have been used to draw the inference that the proportion of conceptuses with chromosome abnormalities is very high. Fluorescent in situ hybridization (FISH) studies of blastomeres from early cleavage embryos have provided some support for this inference but they are limited to the study of a few chromosomes. We describe the novel application of comparative genomic hybridization (CGH) to the study of numerical and structural abnormalities of single blastomeres from disaggregated 3-day-old human embryos. CGH results were obtained for 63 blastomeres from 12 embryos. Identification of all chromosomes with the exception of chromosomes 17, 19, 20 and 22 was possible. The embryos divided into four groups: (1) embryos with a normal CGH karyotype seen in all blastomeres; (2) embryos with consistent aneuploidy suggesting meiotic non-disjunction had occurred; (3) embryos that were mosaic generally with one or more cells showing aneuploidy for one or two chromosomes but some with cells showing extensive aneuploidy; and (4) one embryo with extensive aneuploidy in all blastomeres. The extensive aneuploidy in group 4 is interpreted as corresponding to the random aneuploidy seen in "chaotic" embryos reported by using interphase FISH. Partial chromosome loss and gain following chromosome breakage was observed in one embryo. Our analysis provides basic biological information on the occurrence of constitutional and post-zygotic chromosome abnormalities in early human embryos. Used in conjunction with embryo biopsy, diagnostic CGH should allow the exclusion of a proportion of embryos that appear normal but that have a poor probability of survival and, therefore, may improve the implantation rate after in vitro fertilization.  相似文献   

8.
Meiotic errors during oocyte maturation are considered the major contributors to embryonic aneuploidy and failures in human IVF treatment. Various technologies have been developed to screen polar bodies, blastomeres and trophectoderm cells for chromosomal aberrations. Array-CGH analysis using bacterial artificial chromosome (BAC) arrays is widely applied for preimplantation genetic diagnosis (PGD) using single cells. Recently, an increase in the pregnancy rate has been demonstrated using array-CGH to evaluate trophectoderm cells. However, in some countries, the analysis of embryonic cells is restricted by law. Therefore, we used BAC array-CGH to assess the impact of polar body analysis on the live birth rate. A disadvantage of polar body aneuploidy screening is the necessity of the analysis of both the first and second polar bodies, resulting in increases in costs for the patient and complex data interpretation. Aneuploidy screening results may sometimes be ambiguous if the first and second polar bodies show reciprocal chromosomal aberrations. To overcome this disadvantage, we tested a strategy involving the pooling of DNA from both polar bodies before DNA amplification. We retrospectively studied 351 patients, of whom 111 underwent polar body array-CGH before embryo transfer. In the group receiving pooled polar body array-CGH (aCGH) analysis, 110 embryos were transferred, and 29 babies were born, corresponding to live birth rates of 26.4% per embryo and 35.7% per patient. In contrast, in the control group, the IVF treatment was performed without preimplantation genetic screening (PGS). For this group, 403 embryos were transferred, and 60 babies were born, resulting in live birth rates of 14.9% per embryo and 22.7% per patient. In conclusion, our data show that in the aCGH group, the use of aneuploidy screening resulted in a significantly higher live birth rate compared with the control group, supporting the benefit of PGS for IVF couples in addition to the suitability and effectiveness of our polar body pooling strategy.  相似文献   

9.
We have used multicolour fluorescent in situ hybridisation (FISH) with DNA probes for chromosomes X, Y and 1 to analyse spare untransferred cleavage-stage embryos after preimplantation diagnosis to avoid X-linked disease. In total, 93 morphologically normal embryos were available from seven patients (six of proven fertility) who had undergone fourteen in vitro fertilisation (IVF) cycles. The chromosome patterns observed were classified into four groups; normal, abnormal (non-mosaic), mosaic and chaotic (uncontrolled division). Approximately half of the embryos were normal for the chromosomes tested. Two embryos only were aneuploid (non-mosaic) throughout but, after excluding those showing chaotic division, 30% were considered to be chromosomal mosaics. Of these, a minority had arisen because of mitotic non-disjunction or chromosome loss or gain, whereas the majority were ploidy mosaics, with haploidy being the most common. The occurrence of chaotically dividing embryos was strongly patient-related, i.e. some patients had ‘chaotic’ embryos in repeated cycles, whereas other patients were completely free of this type of anomaly. ‘Chaotic’ embryos are unlikely to progress beyond implantation. These findings have important implications both for routine IVF and preimplantation genetic diagnosis. Received: 18 October 1996 / Revised: 23 January 1997  相似文献   

10.
Cytogenetic research has had a major impact on the field of reproductive medicine, providing an insight into the frequency of chromosomal abnormalities that occur during gametogenesis, embryonic development and pregnancy. In humans, aneuploidy has been found to be relatively common during fetal life, necessitating prenatal screening of high-risk pregnancies. Aneuploidy rates are higher still during the preimplantation stage of development. An increasing number of IVF laboratories have attempted to improve pregnancy rates by using preimplantation genetic diagnosis (PGD) to ensure that the embryos transferred to the mother are chromosomally normal. This paper reviews some of the techniques that are key to the detection of aneuploidy in reproductive samples including comparative genomic hybridization (CGH). CGH has provided an unparalleled insight into the nature of chromosome imbalance in human embryos and polar bodies. The clinical application of CGH for the purposes of PGD and the future extensions of the methodology, including DNA microarrays, are discussed.  相似文献   

11.
Since the early 1990s, preimplantation genetic diagnosis (PGD) has been expanding in scope and applications. Selection of female embryos to avoid X-linked disease was carried out first by polymerase chain reaction, then by fluorescence in situ hybridization (FISH), and an ever-increasing number of tests for monogenic diseases have been developed. Couples with chromosome rearrangements such as Robertsonian and reciprocal translocations form a large referral group for most PGD centers and present a special challenge, due to the large number of genetically unbalanced embryos generated by meiotic segregation. Early protocols used blastomeres biopsied from cleavage-stage embryos; testing of first and second polar bodies is now a routine alternative, and blastocyst biopsy can also be used. More recently, the technology has been harnessed to provide PGD-AS, or aneuploidy screening. FISH probes specific for chromosomes commonly found to be aneuploid in early pregnancy loss are used to test blastomeres for aneuploidy, with the aim of replacing euploid embryos and increasing pregnancy rates in groups of women who have poor IVF success rates. More recent application of PGD to areas such as HLA typing and social sex selection have stoked public controversy and concern, while provoking interesting ethical debates and keeping PGD firmly in the public eye.  相似文献   

12.
Three types of defects of preimplantation embryogenesis contribute to the developmental arrest of cleaving human embryos: blastomere fragmentation, abnormal nuclear status and chromosomal disorders. Data concerning the relation and succession of these abnormalities during first mitotic cycles of the human zygote are controversial and mainly empirical at present. In this study we have performed simultaneous evaluation of blastomere fragmentation, nuclear apoptotic changes and the ploidy of four chromosomes (1, 5, 19 and X or 18, 21, X and Y) in 193 human embryos. Another group of 28 embryos was subjected to TUNEL for confirmation of apoptosis in blastomere nuclei. Nuclei with apoptotic chromatin were seen in nearly 1/10 of blastomeres of embryos with good morphology and in more than 1/5 of blastomeres of embryos with more than 20% fragmentation. The correct number of investigated chromosomes was registered in 85.2% of successfully tested embryos. Chromatin apoptotic changes are the only limiting factor for the success of chromosomal FISH tests. Nearly 1/2 of embryos with at least one apoptotic nucleus were chromosomally abnormal. For the embryos that contain only normal nuclei, the rate of ploid normality was more than 89%. The rate of euploidy was higher (66%) in embryos with a significant degree of cell fragmentation. Moderate cell fragmentation was not related to significant increase of chromatin and chromosomal disorders. In a substantial portion of abnormal blastomeres, chromatin damage preceded cell fragmentation. Nuclear destruction in human blastomeres was illustrated by fluorograms of different stages of chromatin lesions.  相似文献   

13.
We have developed a technique to sample the preimplantation embryo, which may, in the future, be applied to prenatal diagnosis of genetic disease. Using micromanipulation, we aspirated a single blastomere from 4-cell mouse embryos. This procedure had no effect on in vitro development; 98% of control and 94% of biopsied embryos reached the blastocyst stage after 48 h in culture. Furthermore, after transfer to pseudopregnant recipient mice, the rate of fetal development of biopsied embryos was not significantly different from control embryos, although implantation rate was significantly reduced (mean +/- SD: biopsied 53.1 +/- 4.0, control 81.8 +/- 8.4, p less than 0.001). For the first time we have produced monolayer cell cultures derived from single preimplantation blastomeres. Individual biopsied blastomeres were cultured in vitro on different extracellular matrix components. Significantly greater cell proliferation was obtained in wells coated with fibronectin (FN), laminin (LN), and a complex of laminin and nidogen (LNC) than in a less specific matrix of swine skin gelatin (SSG). Mean (+/- SE) cell nuclei number per well after 6 days in culture was 6.4 +/- 2.1, 11.9 +/- 1.5, 19.8 +/- 2.9, and 20.9 +/- 2.6 in wells coated with SSG, LN, FN, and LNC respectively.  相似文献   

14.
We have studied the chromosomal content in 68 normally fertilised freeze-thawed human embryos of good morphology from 34 patients with an average maternal age of 32,6 years. Forty embryos showed post-thaw cellular division and twenty-eight post-thaw cleavage arrest. After spreading of the embryos on microscope slides, analysis of chromosomes X, Y, 15, 16, 17 and 18 was performed using two rounds of fluorescent in situ hybridisation (FISH). According to the results, the embryos were divided into four groups: (I) normal, all nuclei uniformly diploid, (II) diploid mosaics, normal diploid blastomeres in combination with abnormal blastomeres, (III) abnormal, all nuclei abnormal, (IV) chaotic, the chromosome constitution varies randomly from cell to cell. Approximately 25% of the embryos had normal number of the chromosomes tested, while the majority of the embryos were abnormal. Most of the abnormal embryos were diploid mosaics (57%). This was true for the embryos showing cleavage division as well as the embryos showing cleavage arrest. Our data show a slightly higher incidence of abnormal embryos compared to those obtained with FISH in non-cryopreserved embryos and confirm that the majority of preimplantation embryos fertilised in vitro contain abnormal blastomeres. The results, mechanisms, significance and implications are discussed. Received: 19 November 1998 / Accepted: 4 March 1999  相似文献   

15.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   

16.
The aim of this study was to review the experience and outcomes of assisted reproduction cycles with embryos grown up to day 5 of development, comparing different parameters according to the ages of the patients. We retrospectively studied 1,874 assisted reproduction cycles where embryo culture was extended up to the fifth or sixth day of development. All IVF and ICSI cycles were included, comparing, according to patient age, the following rates: blastocyst formation, pregnancy, implantation and abortion. As control, we analyzed cycles with donated oocytes from young donors (OD). The number of embryos reaching the blastocyst stage is similar in all groups of patients. Only the OD group was different in terms of blastocyst formation, pregnancy and implantation rates. Patients over 39 years of age had an abortion rate of 59.1 %, which is significantly higher than the other groups. Extended embryo culture up to the blastocyst stage can be implemented in programs of assisted reproduction in order to increase the pregnancy rate. The potential of blastocyst implantation is high, allowing us to transfer fewer embryos and reduce the probability of multiple pregnancies.  相似文献   

17.
We studied chromosomal abnormalities in arrested embryos produced by assisted reproductive technology with fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) in order to determine the best technique for evaluating chromosomal aneusomies to be implemented in different situations. We examined individual blastomeres from arrested embryos by FISH and arrested whole embryos by CGH. All of the 10 FISH-analyzed embryos gave results, while only 7 of the 30 embryos analyzed by CGH were usable. Fifteen of the 17 embryos were chromosomally abnormal. CGH provided more accurate data for arrested embryos; however, FISH is the technique of choice for screening in preimplantation genetic diagnosis, because the results can be obtained within a day, while the embryos are still in culture.  相似文献   

18.
The autosomal beta1 integrin knockout mouse mutation was selected as a model to experimentally determine preimplantation diagnosis test reliability for autosomal gene deletions and duplications. In experiment 1, which analyzed 198 individually disaggregated single blastomeres, the observed test frequencies matched the mathematically predicted frequencies calculated from the independently derived values of 90% normal allele amplification, 92% mutant allele amplification, 4% alternate allele contamination, and 4% failure to transfer amplifiable target DNA into the PCR reaction mix. This experiment correctly predicted a normal embryonic phenotype in 143 (99.3%) of the 144 phenotypically normal autosomal recessive results. Experiment 2 compared single biopsied blastomere test results to test results on the remaining embryonic cells cultured 1 week until trophoblast outgrowth. Single biopsied blastomere analysis correctly predicted a normal autosomal recessive phenotype in 87 (98%) of the 89 embryos that would have been selected for implantation. Experiment 3 compared the PCR results of two biopsied blastomeres tested independently to the PCR result from the remaining cultured blastomeres to improve test reliability. Given that embryos would have been implanted only when two normal results were obtained, 17 of 17 phenotypically normal embryos would have been implanted from among the 44 embryos tested. These experiment 3 results are consistent with the mathematical prediction that about 99.9% of embryos implanted with two unaffected biopsied blastomere results would have had a phenotypically normal genotype.  相似文献   

19.
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.  相似文献   

20.
Is it necessary to analyze two blastomeres in preimplantation genetic diagnosis (PGD) by fluorescence in situ hybridization (FISH) or is one blastomere enough, as suggested by some teams? We analyzed the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), false positives (FP), false negatives (FN), and the efficiency (Eff) of FISH performed on one (Group I) or two (Group II) blastomeres. Ninety embryos were analyzed (day 3), 19 blastocysts were replaced (day 5), 64 embryos were reanalyzed (day 5), (Group I = 23; Group II = 41). No differences were observed between the two groups for all of the parameters considered, but one false negative was observed in Group I. Furthermore, two embryos from Group II, which had a discordant diagnosis at PGD (one blastomere being normal and one abnormal), were read as abnormal after reanalysis. The accidental biopsy of the normal blastomere could have lead to the selection of these 2 embryos for transfer, causing a misdiagnosis rate of 4.8%. We conclude that embryo reanalysis is a useful tool to test the reliability of PGD in each laboratory: that PGD on two blastomeres is safer because the practice of PGD on one blastomere can result in a false-negative misdiagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号