首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The needle‐terpene profiles of two natural Pinus heldreichii populations from Mts. O?ljak and Gali?ica (Scardo‐Pindic mountain system) were analyzed. Among the 68 detected compounds, 66 were identified. The dominant constituents were germacrene D (28.7%), limonene (27.1%), and α‐pinene (16.2%). β‐Caryophyllene (6.9%), β‐pinene (5.2%), β‐myrcene (2.3%), pimaric acid (2.0%), α‐humulene (1.2%), and seven additional components were found to be present in medium‐to‐high amounts (0.5–10%). Although the general needle‐terpene profile of the population from Gali?ica was similar to those of the populations from Lov?en, Zeletin, Bjelasica, and Zlatibor‐Pe?ter (belonging to the Dinaric Alps), the principle‐component analysis (PCA) of seven terpenes (β‐myrcene, limonene, β‐elemene, β‐caryophyllene, α‐humulene, δ‐cadinene, and germacrene D‐4‐ol) in 121 tree samples suggested a partial divergence in the needle‐terpene profiles between the populations from the Scardo‐Pindic mountain system and the Dinaric Alps. According to previously reported data, the P. heldreichii samples from the Balkan‐Rhodope mountains lack β‐caryophyllene and germacrene D, but contain γ‐muurolene in their terpene profile. Differences in the terpene composition between populations growing in the three above‐mentioned mountain systems were compared and discussed.  相似文献   

2.
This study is the first report on the composition and variability of essential oil in the relic, endemic, and vulnerable tree species Serbian spruce, Picea omorika, in its natural populations. In the needles of 108 trees of four natural populations, 49 components of essential oils were identified. The main compounds were bornyl acetate (29.2%), camphene (18.7%), and α‐pinene (12.9%). Fourteen additional components had the contents of up to 0.5%: α‐cadinol (6.1%), limonene (5.8%), santene (3.5%), (E)hex‐2‐enal (2.9%), T‐cadinol (2.9%), δ‐cadinene (2.3%), tricyclene (2.1%), myrcene (1.6%), β‐pinene (1.2%), borneol (0.9%), germacrene D (0.9%), α‐muurolene (0.6%), and two unidentified compounds. Population IV from Mile?evka Canyon had a much higher content of bornyl acetate (42.9%). Populations I–III from Mt. Tara were more abundant in sesquiterpenes (up to 18.2%). The content of bornyl acetate, the multi‐variation analyses according to seven selected components, especially the cluster analysis and genetic analysis of α‐cadinol, which suggested the monogenic type of heredity, showed a clear differentiation of the two geographic areas, the similarity of populations I–III from the area of Mt. Tara, and the separation of the population IV from Mile?evka Canyon.  相似文献   

3.
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra ) from the Julian Alps were investigated by GC‐FID and GC/MS analyses. In total, 54 of the 57 detected essential‐oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ‐car‐3‐ene, β‐phellandrene, α‐pinene, β‐myrcene, and β‐pinene and the sesquiterpene β‐caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal‐component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.  相似文献   

4.
The essential oils from needles, twigs, bark, wood, cones and young shoots of Pinus mugo were analyzed by GC, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were 3‐carene (23.8 %), myrcene (22.3 %), and α‐pinene (10.3 %). The needle oil contained mainly α‐pinene (18.6 %), 3‐carene (11.3 %), and bornyl acetate (8.3 %). The oils from twigs without needles, young shoots, bark, and wood were dominated by 3‐carene (28.6 %, 15.0 %, 18.5 %, and 34.6 %, respectively) and myrcene (23.4 %, 24.0 %, 24.6 %, and 9.4 %, respectively). In the cone oil (E)‐β‐caryophyllene was the main constituent (24.0 %).  相似文献   

5.
The chemical composition of 48 leaf oil samples isolated from individual plants of Cleistopholis patens (Benth .) Engl. et Diels harvested in four Ivoirian forests was investigated by GC‐FID (determination of retention indices), GC/MS, and 13C‐NMR analyses. The main components identified were β‐pinene (traces–59.1%), sabinene (traces–54.2%), (E)‐β‐caryophyllene (0.3–39.3%), linalool (0.1–38.5%), (E)‐β‐ocimene (0.1–33.2%), germacrene D (0.0–33.1%), α‐pinene (0.1–32.3%), and germacrene B (0–21.2%). The 48 oil compositions were submitted to hierarchical clustering and principal components analyses, which allowed the distinction of three groups within the oil samples. The oil composition of the major group (Group I, 33 samples) was dominated by (E)‐β‐caryophyllene and linalool. The oils of Group II (eight samples) contained mainly β‐pinene and α‐pinene, while those of Group III (seven samples) were dominated by sabinene, limonene, and β‐phellandrene. Moreover, the compositions of the Ivoirian C. patens leaf oils differed from those of Nigerian and Cameroonian origins.  相似文献   

6.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   

7.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

8.
The chemical composition of 42 essential‐oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC‐FID, including the determination of retention indices (RIs), and by 13C‐NMR analyses. In total, 36 components accounting for 91.9–92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.9–56.9%), (Z)‐β‐ocimene (0.3–54.6%), β‐pinene (0.8–27.9%), α‐pinene (0.1–22.8%), and furanoguaia‐1,4‐diene (0.0–17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)‐β‐caryophyllene. The oils of the second group (12 samples) contained β‐pinene and α‐pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)‐β‐ocimene, germacrene D, (E)‐β‐ocimene, and furanoguaia‐1,4‐diene. The oil samples of Group I and II came from clay‐soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy‐soil forest.  相似文献   

9.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

10.
In the present work, the leaf essential oil from 97 individuals of Juniperus phoenicea var. turbinata (Guss .) Parl . from the Balkan Peninsula was analyzed. The essential oil was dominated by monoterpene hydrocarbons (45.5 – 71.8%), of which α‐pinene was the most abundant in almost all of the samples (38.2 – 55.8%). Several other monoterpenes and sesquiterpenes were also present in relatively high abundances in samples such as myrcene, δ‐3‐carene, β‐phellandrene, α‐terpinyl acetate, (E)‐caryophyllene and germacrene D. Multivariate statistical analysis suggested the existence of three possible chemotypes based on the abundance of the four components. Even though the intrapopulation variability was high, discriminant analysis (DA) was able to separate populations. DA showed high separation between western and eastern populations but also grouped geographically closer populations along the west Balkan shoreline. The potential influence of the climate on the composition of the essential oil was also studied.  相似文献   

11.
The chemical composition of trunk bark oil from Cleistopholis patens (Benth .) Engl . & Diels , growing wild in Côte d'Ivoire, has been investigated by GC (FID) in combination with retention indices, GC/MS and 13C‐NMR. Moreover, one oil sample has been subjected to CC and all the fractions analyzed by GC (RI) and 13C‐NMR. In total, 61 components have been identified, including various sesquiterpene esters scarcely found in essential oils. 13C‐NMR was particularly efficient for the identification of a component not eluted on GC and for the quantification of heat‐sensitive compounds. Then, 36 oil samples, isolated from trunk bark harvested in six Ivoirian forests have been analyzed. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.4 – 69.1%), β‐pinene (0 – 57%), α‐phellandrene (0 – 33.2%), α‐pinene (0.1 – 30.6%), β‐elemol (0.1 – 29.9%), germacrene D (0 – 25.4%), juvenile hormone III (0 – 22.9%), germacrene B (0 – 20.6%) and sabinene (tr‐20.3%). Statistical analysis, hierarchical clustering and principal components analysis, carried out on the 36 compositions evidenced a fair chemical variability of the stem bark oil of this species. Indeed, three clusters have been distinguished: the composition of group I (ten samples) was dominated by β‐pinene and α‐pinene, group II (nine samples) was represented by α‐phellandrene and p‐cymene and group III (16 samples) by β‐elemol. A sample displayed an atypical composition dominated by (E)‐β‐caryophyllene.  相似文献   

12.
Volatile‐oils chemical composition and bioactivity of the essentail oils from Plectranthus barbatus, P. neochilus, and P. ornatus (Lamiaceae) were assessed. Aerial parts from these three related Plectranthus species were collected from cultivated plants grown in Portugal, during vegetative and flowering phases. Volatiles, isolated by distillation? extraction, were analyzed by GC and GC/MS. Monoterpene hydrocarbons (12–74%) and sesquiterpene hydrocarbons (4–45%) constituted the main fractions in all volatiles. α‐Pinene ( 3 ; 12–67%), oct‐1‐en‐3‐ol ( 6 ; traces–28%), β‐pinene ( 7 ; 0.1–22%), and β‐caryophyllene ( 50 ; 7–12%) dominated P. barbatus volatiles. P. neochilus major volatile components were α‐terpenyl acetate ( 41 ; traces–48%), α‐thujone ( 2 ; 2–28%), β‐caryophyllene ( 50 ; 2–28%), β‐pinene ( 7 ; 1–25%), and α‐pinene ( 3 ; 1–19%). Oct‐1‐en‐3‐ol ( 6 ; 13–31%), β‐pinene ( 7 ; 11–24%), α‐pinene ( 3 ; 11–19%), and β‐caryophyllene ( 50 ; traces–11%) were the main constituents from P. ornatus volatiles. These chemical compositions were rather different from those previously found for specimens harvested in Africa and Brazil. Moreover, the volatiles from the flowers are herewith reported for the first time. Essential oils, isolated by hydrodistillation from leaves and stems, showed a yellowish color and unpleasant odor, with yields ranging from 0.08% to 0.84% (v/dry weight). Antioxidant and antimicrobial activities of the essential oils were evaluated by DPPH. and TBARS assays, and agar disc‐diffusion method, respectively. Results showed low or moderate antioxidant capacity and significant antimicrobial activity against Gram‐positive bacteria.  相似文献   

13.
The essential‐oil composition of six native populations of Sideritis scardica from Bulgaria was studied by GC‐FID and GC/MS analyses. Altogether, 37 components, representing 73.1 to 79.2% of the total oil content were identified. Among them, α‐pinene (4.4–25.1%), β‐pinene (2.8–18.0%), oct‐1‐en‐3‐ol (2.3–8.0%), phenylacetaldehyde (0.5–9.5%), β‐bisabolene (1.3–11.0%), benzyl benzoate (1.1–14.3%), and m‐camphorene ( 1 ; 0.3–12.4%) were the main compounds. All samples were characterized by low contents of oxygenated mono‐ and sesquiterpenes (≤1.6 and 2.3%, resp.). Principal component analysis (PCA) and cluster analysis (CA) showed a significant variability in the chemical composition of the studied samples as well as a correlation between the oil profiles and the ecological conditions of the natural habitats of S. scardica.  相似文献   

14.
The variation of the essential‐oil composition among ten wild populations of Stachys lavandulifolia Vahl (Lamiaceae), collected from different geographical regions of Iran, was assessed by GC‐FID and GC/MS analyses, and their intraspecific chemical variability was determined. Altogether, 49 compounds were identified in the oils, and a relatively high variation in their contents was found. The major compounds of the essential oils were myrcene (0.0–26.2%), limonene (0.0–24.5%), germacrene D (4.2–19.3%), bicyclogermacrene (1.6–18.0%), δ‐cadinene (6.5–16.0%), pulegone (0.0–15.1%), (Z)‐hex‐3‐enyl tiglate (0.0–15.1%), (E)‐caryophyllene (0.0–12.9), α‐zingiberene (0.2–12.2%), and spathulenol (1.6–11.1%). For the determination of the chemotypes and the chemical variability, the essential‐oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (germacrene D/bicyclogermacrene), Chemotype II (germacrene D/spathulenol), Chemotype III (limonene/δ‐cadinene), Chemotype IV (pulegone), and Chemotype V (α‐zingiberene). The high chemical variation among the populations according to their geographical and bioclimatic distribution imposes that conservation strategies of populations should be made appropriately, taking into account these factors. The in situ and ex situ conservation strategies should concern all populations representing the different chemotypes.  相似文献   

15.
The hydrodistilled essential oils obtained from aerial flowering parts of Teucrium stocksianum ssp. stocksianum (TSS) and T. stocksianum ssp. gabrielae (TSG) from Iran were analyzed by capillary GC and GC/MS. The oil analysis of two subspecies led to the identification of 65 compounds that accounted for 93.3 and 95.1% of the total oil compositions, respectively. Sesquiterpenoids (52.9%) constituted the main compounds in the essential oil of TSS represented mainly by cis‐sesquisabinene hydrate (12.0%), followed by epiβ‐bisabolol (6.6%), guaiol (5.4%), and β‐eudesmol (4.4%), whilst monoterpenoids (61.2%) were found to be the major components of the oil of TSG, represented by α‐pinene (23.0%), β‐pinene (13.0%), myrcene (6.3%), and sabinene (6.3%). The principal component in both subspecies, TSS and TSG, was α‐pinene (22.0 and 23.0%, resp.) and β‐pinene (6.5 and 13.0%, resp.). epiα‐Cadinol, myrcene, and sabinene, which were detected as principal compounds of TSG, were characterized in lower amounts (<1.5%) in the oil of TSS. Seven components were identified in the oil of TSS corresponding to 25.9% of total oil, which were totally absent in the oil of TSG, of which cis‐sesquisabinene hydrate (12.0%), guaiol (5.4%), and β‐eudesmol (4.4%) were in considerable amounts. Taxonomic position of the subspecies is discussed on the basis of phytochemical data.  相似文献   

16.
Guatteria pogonopus Martius , a plant belonging to the Annonaceae family, is found in the remaining Brazilian Atlantic Forest. In this study, the chemical composition and antitumor effects of the essential oil isolated from leaves of G. pogonopus was investigated. The chemical composition of the oil was determined by GC‐FID and GC/MS analyses. The in vitro cytotoxicity was evaluated against three different tumor cell lines (OVCAR‐8, NCI‐H358M, and PC‐3M), and the in vivo antitumor activity was tested in mice bearing sarcoma 180 tumor. A total of 29 compounds was identified and quantified in the oil. The major compounds were γ‐patchoulene (13.55%), (E)‐caryophyllene (11.36%), β‐pinene (10.37%), germacrene D (6.72%), bicyclogermacrene (5.97%), α‐pinene (5.33%), and germacrene B (4.69%). The essential oil, but neither (E)‐caryophyllene nor β‐pinene, displayed in vitro cytotoxicity against all three tumor cell lines tested. The obtained average IC50 values ranged from 3.8 to 20.8 μg/ml. The lowest and highest values were obtained against the NCI‐H358M and the OVCAR‐8 cell lines, respectively. The in vivo tumor‐growth‐inhibition rates in the tumor‐bearing mice treated with essential oil (50 and 100 mg/kg/d) were 25.3 and 42.6%, respectively. Hence, the essential oil showed significant in vitro and in vivo antitumor activity.  相似文献   

17.
Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential‐oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α‐pinene (18.0±2.9%), 1,8‐cineole (14.7±3.0%), cis‐thujone (14.0±6.9%), and borneol (12.8±2.2%) and smaller amounts of camphene, camphor, and β‐pinene, whereas the populations from Thrace showed high α‐pinene (16.7±4.0%), β‐pinene (22.8±4.5%), camphor (18.3±4.3%), and camphene (10.3±2.4%) contents, much lower 1,8‐cineole and borneol amounts, while cis‐thujone was completely lacking. The comparison of the present results with published data showed that oils having cis‐thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential‐oil variation was related to geographical and environmental factors.  相似文献   

18.
Abstract: Choice and no‐choice feeding assays on the twigs of three host species demonstrated the following feeding preference sequence by Monochamus alternatus: Pinus massoniana > Cedrus deodara > Pinus thunbergii. There were significant differences in the concentrations of α‐pinene, camphene, d ‐limonene, β‐phellandrene, longifolene and β‐caryophyllene in volatiles emitted by twigs among the three species. We tested the effects of six monoterpenes (α‐pinene, β‐pinene, 3‐carene, myrcene, limonene and β‐caryophyllene) added to an artificial diet consisting of bark from P. thunbergii on consumption rates by M. alternatus. The addition of α‐pinene at all four concentrations 0.4, 1.2, 3.6 and 10.8 μl/ml resulted in increases of a twofold greater consumption rate than the control at a concentration of 3.6 μl/ml. Limonene inhibited diet consumption at concentrations >0.4 μl/ml. The concentration of α‐pinene in volatiles emitted by twigs was significantly higher for P. massoniana than for P. thunbergii, whereas the reverse was true for limonene. There were no differences for any of the other host components, suggesting that α‐pinene and limonene may play an important role in the adult's selection and acceptance of suitable and unsuitable feed host. Mixed compounds promoted the consumption of artificial diet at a concentration of 0.4 μl/ml, whereas consumption was inhibited at a concentration of 10.8 μl/ml. There were significant linear correlations (β‐pinene: r2 = 0.930, P < 0.05; myrcene: r2 = 0.933, P < 0.05) between the amount of diets consumed and diet concentrations of β‐pinene and myrcene. In conclusion, host volatile terpenes may stimulate or repel M. alternatus depending on terpene concentrations they encounter during initial feeding and then possibly inhibit further feeding activity once concentrations increase to threshold levels.  相似文献   

19.
Murraya koenigii (L.) Spreng. (Rutaceae), commonly known as ‘curry leaf tree’, is a popular spice and condiment of India. To explore the diversity of the essential‐oil yield and aroma profile of curry leaf, growing wild in foot and mid hills of north India, 58 populations were collected during spring season. M. koenigii populations were found to grow up to an altitude of 1487 m in north India. Comparative results showed considerable variations in the essential‐oil yield and composition. The essential‐oil yield varied from 0.14 to 0.80% in shade‐dried leaves of different populations of M. koenigii. Analysis of the essential oils by GC and GC/MS, and the subsequent classification by statistical analysis resulted in four clusters with significant variations in their terpenoid composition. Major components of the essential oils of investigated populations were α‐pinene ( 2 ; 4.5–71.5%), sabinene ( 3 ; <0.05–66.1%), (E)‐caryophyllene ( 11 ; 1.6–18.0%), β‐pinene ( 4 ; <0.05–13.6%), terpinen‐4‐ol ( 9 ; 0.0–8.4%), γ‐terpinene ( 8 ; 0.2–7.4%), limonene ( 7 ; 1.1–5.5%), α‐terpinene ( 6 ; 0.0–4.5%), (E)‐nerolidol ( 14 ; 0.0–4.1%), α‐humulene ( 12 ; 0.6–3.5%), α‐thujene ( 1 ; 0.0–2.5%), β‐elemene ( 10 ; 0.2–2.4%), β‐selinene ( 13 ; 0.2–2.3%), and myrcene ( 5 ; 0.5–2.1%). Comparison of the present results with those in earlier reports revealed new chemotypes of M. koenigii in investigated populations from Western Himalaya. The present study documents M. koenigii populations having higher amounts of sabinene ( 3 ; up to 66.1%) for the first time.  相似文献   

20.
The volatile compounds from Peucedanum cervaria (Lap. ) L. were obtained by hydrodistillation (HD) and headspace solid‐phase microextraction techniques (HS‐SPME), and then analyzed by GC/MS methods. The composition of samples from a botanical garden was compared with plants collected in the wild. The main compounds of the essential oils of P. cervaria were identified as α‐pinene, sabinene, and β‐pinene (more than 80% of oil). The content of β‐myrcene, limonene+β‐phellandrene, and germacrene D was higher than 1%. The in vitro antibacterial activity of the essential oil was evaluated by the agar dilution method against ten reference strains of Gram‐positive and Gram‐negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号