首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The blood-brain barrier (BBB) prevents free access of circulating molecules to the brain and maintains a specialized brain environment to protect the brain from blood-derived bioactive and toxic molecules; however, the circumventricular organs (CVOs) have fenestrated vasculature. The fenestrated vasculature in the sensory CVOs, including the organum vasculosum of lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows neurons and astrocytes to sense a variety of plasma molecules and convey their information into other brain regions and the vasculature in the secretory CVOs, including median eminence (ME) and neurohypophysis (NH), permits neuronal terminals to secrete many peptides into the blood stream. The present study showed that vascular permeability of low-molecular-mass tracers such as fluorescein isothiocyanate (FITC) and Evans Blue was higher in the secretory CVOs and kidney as compared with that in the sensory CVOs. On the other hand, vascular permeability of high-molecular-mass tracers such as FITC-labeled bovine serum albumin and Dextran 70,000 was lower in the CVOs as compared with that in the kidney. Prominent vascular permeability of low- and high-molecular-mass tracers was also observed in the arcuate nucleus. These data demonstrate that vascular permeability for low-molecular-mass molecules is higher in the secretory CVOs as compared with that in the sensory CVOs, possibly for large secretion of peptides to the blood stream. Moreover, vascular permeability for high-molecular-mass tracers in the CVOs is smaller than that of the kidney, indicating that the CVOs are not totally without a BBB.  相似文献   

2.
3.
Systemic angiotensin II (Ang II) is a dipsogen in terrestrial vertebrates and seawater teleosts. In eels, Ang II acts on the area postrema, a sensory circumventricular organ (CVO) and elicits water intake but other sensory CVOs have not yet been found in the eel forebrain. To identify sensory CVOs in the forebrain, eels were peripherally injected with Evans blue, which immediately binds to albumin, or a rabbit IgG protein. Extravasation of these proteins, which cannot cross the blood–brain barrier (BBB), was observed in the brain parenchyma of the anteroventral preoptic recess (PR) walls. Fenestrated capillaries were observed in the parenchymal margin of the ventral wall of the PR, confirming a deficit of the BBB in the eel forebrain. Immunostaining for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) detected neurons in the lateral region of the anterior parvocellular preoptic nucleus (PPa), which were strongly stained by BBB-impermeable N-hydroxysulfosuccinimide. In the periventricular region of the PPa, many neurons incorporated biotinylated dextran amine conjugated to fluorescein, a retrograde axonal tracer, injected into the magnocellular preoptic nucleus (PM), indicating neuronal connections from the PPa to the PM. The mammalian paraventricular and supraoptic nuclei, homologous to the teleost PM, receive principal neuronal projections from the organum vasculosum of the lamina terminalis (OVLT). These results strongly suggest that the periventricular subpopulation of the PPa, which is most likely to be a component of the OVLT, serves as a functional window of access for systemic signal molecules such as Ang II.  相似文献   

4.
The objectives of this study were to establish pure blood–nerve barrier (BNB) and blood–brain barrier (BBB)‐derived pericyte cell lines of human origin and to investigate their unique properties as barrier‐forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature‐sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α‐smooth muscle actin, NG2, platelet‐derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, the inulin clearance was significantly lowered in peripheral nerve microvascular endothelial cells (PnMECs) through the up‐regulation of claudin‐5 by soluble factors released from brain or peripheral nerve pericytes. In particular, bFGF secreted from peripheral nerve pericytes strengthened the barrier function of the BNB by increasing the expression of claudin‐5. Peripheral nerve pericytes may regulate the barrier function of the BNB, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function. Furthermore, these cell lines expressed several neurotrophic factors such as NGF, BDNF, and GDNF. The secretion of these growth factors from peripheral nerve pericytes might facilitate axonal regeneration in peripheral neuropathy. Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration. J. Cell. Physiol. 226: 255–266, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
It has been demonstrated that the exposure of biological systems to magnetic fields (MFs) can produce several beneficial effects: tissue recovery in chronic wounds, re‐establishment of blood circulation after tissue ischemia or in necrotic tissues, improvement after epileptic episodes, angiogenesis, etc. In the current study, the effects of extremely low frequency (ELF) MF on the capillaries of some circumventricular organs (CVOs) are demonstrated; a vasodilator effect is reported as well as an increase in their permeability to non‐liposoluble substances. For this study, 96 Wistar male rats (250 g body mass) were used and divided into three groups of 32 rats each: a control group (no treatment); a sham ELF‐MF group; and an experimental group subjected to ELF‐MF (120 Hz harmonic waves and 0.66 mT, root mean square) by the use of Helmholtz coils. All animals were administered colloidal carbon (CC) intravenously to study, through optical and transmission electron microscopy, the capillary permeability in CVOs and the blood–brain barrier (BBB) in brain areas. An increase in capillary permeability to CC was detected in the ELF‐MF‐exposed group as well as a significant increase in vascular area (capillary vasodilation); none of these effects were observed in individuals of the control and sham ELF‐MF groups. It is important to investigate the mechanisms involved in the phenomena reported here in order to explain the effects of ELF‐MF on brain vasculature. Bioelectromagnetics 34:145–155, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Cover Image     
The human central nervous system (CNS) vasculature expresses a distinctive barrier phenotype, the blood–brain barrier (BBB). As the BBB contributes to low efficiency in CNS pharmacotherapy by restricting drug transport, the development of an in vitro human BBB model has been in demand. Here, we present a microfluidic model of CNS angiogenesis having three-dimensional (3D) lumenized vasculature in concert with perivascular cells. We confirmed the necessity of the angiogenic tri-culture system (brain endothelium in direct interaction with pericytes and astrocytes) to attain essential phenotypes of BBB vasculature, such as minimized vessel diameter and maximized junction expression. In addition, lower vascular permeability is achieved in the tri-culture condition compared to the monoculture condition. Notably, we focussed on reconstituting the functional efflux transporter system, including p-glycoprotein (p-gp), which is highly responsible for restrictive drug transport. By conducting the calcein-AM efflux assay on our 3D perfusable vasculature after treatment of efflux transporter inhibitors, we confirmed the higher efflux property and prominent effect of inhibitors in the tri-culture model. Taken together, we designed a 3D human BBB model with functional barrier properties based on a developmentally inspired CNS angiogenesis protocol. We expect the model to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.  相似文献   

7.
The blood–brain barrier (BBB) is a structural and functional barrier that prevents free exchange of circulating substances with the brain, where the endothelial cells of microvessels are joined by tight junctions. The circumventricular organs (CVOs), by contrast, lack tight junctions and exhibit more direct communication with the circulating blood and cerebrospinal fluid. Despite many outstanding morphological studies at the electron microscopic level, there remain misconceptions that the CVOs provide direct passage of blood-borne substances to the rest of the brain. This study will show the structure of the anatomical borders of the dorsal vagal complex in the brainstem. A distinct diffusion barrier between the area postrema (AP, a CVO) and the nucleus tractus solitarius (NTS) was illustrated by immunohistochemistry at both the light and electron microscopic levels. The border zone between the AP and NTS was underlined by a continuous monolayer of columnar cells that were immunopositive for both the tight junction protein zona occludin-1 and the astrocyte marker glial fibrillary acidic protein. This observation of a diffusion barrier between the AP and NTS resolves a long-standing dispute about whether the NTS is a structural extension of the AP with a leaky BBB. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

8.
Central effects of dehydration are stimulated by osmotic stimuli, the reduced input of volume receptors, and angiotensin II. The subfornical organ (SFO) and organum vasculosum laminae terminalis (OVLT) have become accepted as putative receptor sites for angiotensin II in the brain. The exact quantitative relationship between the hours of water deprivation and the amount of angiotensin generated peripherally and whether that amount is sufficient to induce thirst centrally have not been established, but there is no question that when animals are dehydrated their angiotensin levels rise and the animals are thirsty. Attempts to block centrally the contribution of angiotensin II to thirst have been variable and cholinergic inputs have to be blocked at the same time. Various stimuli for thirst interact in a parallel fashion, and when one stimulus is blocked the other stimuli are still effective. Plasma angiotensin II may induce natural thirst, but how it enters the brain still remains to be explained. Although the SFO and OVLT have no blood-brain barrier, the blood supply to these organs acts as a limited perfusion system whereby blood-borne proteins cannot diffuse far from the capillary bed. A second set of receptors is found on the ventricular surface of the OVLT, as shown by fluorescence labeled angiotensin II. The connection between the SFO and OVLT was cut by discrete knife cuts. Drinking to angiotensin II intraventricularly was not significantly altered but the pressor response was reduced by 50%. These results can be explained by a circuit for drinking passing down below the level of the knife cut and a separate pressor pathway passing dorsally through the area that was cut by the knife. Thirst and pressor neural circuits beginning with angiotensin receptors could explain some of the data accumulated with the AV3V syndrome that occurs when the OVLT and nucleus medianas are destroyed.  相似文献   

9.
Iron is essential for normal brain function and its uptake in the developing rat brain peaks during the first two weeks after birth, prior to the formation of the blood–brain barrier (BBB). The first step of iron transport from the blood to the brain is transferrin receptor (TfR)-mediated endocytosis in the capillary endothelial cells. However, the subsequent step from the endothelium into interstitium has not been fully described. The goal of this study was to examine the expression of iron transport proteins by immunodetection and RT–PCR in the developing rat brain. Tf and TfR are transiently expressed in perivascular NG2+ cells of the capillary wall during the early postnatal weeks in the rat brain. However, MTP-1 and hephaestin were expressed in endothelial cells, but not in the NG2+ perivascular cells. Immunoblot analysis for these iron transfer proteins in the developing brain generally confirmed the immunochemical findings. Furthermore, the expression of Tf and TfR in the blood vessels precedes its expression in oligodendrocytes, the main iron-storing cells in the vertebrate brain. RT–PCR analysis for the primary culture of endothelial cells and pericytes revealed that Tf and TfR were highly expressed in the pericytes while MTP-1 and hephaestin were expressed in the endothelial cells. The specific expression of Tf and TfR in brain perivascular cells and MTP-1 and hephaestin in endothelial cells suggest the possibility that trafficking of elemental iron through perivascular cells may be instrumental in the distribution of iron in the developing central nervous system.  相似文献   

10.
From recent morphological and physiological studies of capillaries, I shall review four new or revised concepts about blood-tissue communication in the subfornical organ (SFO) and area postrema (AP). First, the capillary systems of SFO and AP exhibit subregional differentiation correlated topographically with cytoarchitecture, densities of immunoreactivity for several peptides and amines, cellular sensitivity to neuroactive substances, afferent neural terminations, and tissue metabolic activity. Thus, contrary to frequent citations, the angioarchitecture and microcirculatory physiology of these small sensory nuclei are not homogeneous. Second, electron microscopic, morphometric, and topographical studies reveal that SFO contains three different types of capillary and AP has two. The differentiated capillary morphology appears to be well organized for specialized functions particularly in SFO subregions. No other body organ or small tissue region is known to have such capillary diversity, further highlighting the complex functions served by SFO. Third, pools of interstitial fluid (Virchow-Robin spaces) surrounding type I and III capillaries in SFO and AP may participate in the receptive properties of these organs as low-resistance pathways for rapid dispersion of blood-borne hormones inside their organ boundaries. The parenchymal walls of Virchow-Robin spaces appear to harbour metabolic mechanisms for hormones such as angiotensin II, and thus could vastly extend the effective blood-brain surface area of permeable capillaries in SFO and AP. Fourth, SFO and AP bear similar physiological characteristics of high blood volume, yet relatively low rates of blood flow. Accordingly, intracapillary blood velocity must be quite slow in these organs, and the duration of transit by blood and circulating messengers rather protracted. This feature of slow blood transit time likely compounds the sensory capability of SFO and AP, rendering increased contact time for blood-borne hormones to penetrate the permeable capillaries of these structures and interact with their known dense populations of receptors for several homeostatic substances involved in regulation of blood pressure and body fluids.  相似文献   

11.
Circumventricular organs (CVO) play a critical role as transducers of information between the blood, neurons and the cerebral spinal fluid (CSF). They permit both the release and sensing of hormones without disrupting the blood-brain barrier (BBB) and as a consequence of such abilities the CVOs are now well established to have essential regulatory actions in diverse physiological functions. The sensory CVOs are essential signal transducers located at the blood-brain interface regulating autonomic function. They have a proven role in the control of cardiovascular function and body fluid regulation, and have significant involvement in central immune response, feeding behavior and reproduction, the extent of which is still to be determined. This review will attempt to summarize the research on these topics to date. The complexities associated with sensory CVO exploration are intense, but should continue to result in valuable contributions to our understanding of brain function.  相似文献   

12.
A lesion of the subfornical organ (SFO) may reduce sodium depletion-induced salt appetite, which is largely dependent on ANG II, and yet ANG II infusions directly into SFO do not provoke salt appetite. Two experiments were designed to address this apparent contradiction. In experiment 1 sustained infusions of ANG II into SFO did not produce a sustained elevation of blood pressure, and neither a reduction of blood pressure alone with minoxidil and captopril nor a reduction of both blood pressure and volume with furosemide and captopril enhanced salt appetite. Infusions of ANG II in the organum vasculosum laminae terminalis (OVLT) did evoke salt appetite without raising blood pressure. In experiment 2 knife cuts of the afferent and efferent fibers of the rostroventral pole of the SFO abolished water intake during an infusion of ANG II into the femoral vein but failed to reduce salt appetite during an infusion of ANG II into the OVLT. We conclude that 1) hypertension does not account for the failure of infusions of ANG II in the SFO to generate salt appetite and 2) the OVLT does not depend on its connectivity with the SFO to generate salt appetite during ANG II infusions.  相似文献   

13.
The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid‐beta (Aβ) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aβ1‐40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation‐dependent impact of Aβ1‐40 on human NG2+ pericytes. Fibril‐EP Aβ1‐40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aβ1‐40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer‐EP Aβ1‐40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aβ1‐40 as potential key regulators of the brain pericyte population size.  相似文献   

14.
Neural crest (NC) cells originate from the neural folds and migrate into the various embryonic regions where they differentiate into multiple cell types. A population of cephalic neural crest‐derived cells (NCDCs) penetrates back into the developing forebrain to differentiate into microvascular pericytes, but little is known about when and how cephalic NCDCs invade the telencephalon and differentiate into pericytes. Using a transgenic mouse line in which NCDCs are genetically labeled with enhanced green fluorescent protein (EGFP), we observed that NCDCs started to invade the telencephalon together with endothelial cells from embryonic day (E) 9.5. A majority of NCDCs located in the telencephalon expressed pericyte markers, that is, PDGFRβ and NG2, and differentiated into pericytes around E11.5. Surprisingly, many of the NC‐derived pericytes express p75, an undifferentiated NCDC marker at E11.5, as well as NCDCs in the mesenchyme. At the same time, a minor population of NCDCs that located separately from blood vessels in the telencephalon were NG2‐negative and some of these NCDCs also expressed p75. Proliferation and differentiation of pericytes appeared to occur in a specific mesenchymal region where blood vessels penetrated into the telencephalon. These results indicate that (i) NCDCs penetrate back into the telencephalon in parallel with angiogenesis, (ii) many NC‐derived pericytes may be still in pre‐mature states even though after differentiation into pericytes in the early developing stages, (iii) a small minority of NCDCs may retain undifferentiated states in the developing telencephalon, and (iv) a majority of NCDCs proliferate and differentiate into pericytes in the mesenchyme around the telencephalon.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV‐1) infection of the central nervous system (CNS) affects cross‐talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV‐1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV‐1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV‐1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV‐1 receptor CD4 and co‐receptors CXCR4 and CCR5. We also determined that HIV‐1 can replicate, although at a low level, in human brain pericytes as detected by HIV‐1 p24 ELISA. Pericytes were susceptible to infection with both the X4‐tropic NL4‐3 and R5‐tropic JR‐CSF HIV‐1 strains. Moreover, HIV‐1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV‐1 and suggest that infected pericytes are involved in the progression of HIV‐1‐induced CNS damage.  相似文献   

16.
17.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   

18.
The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.  相似文献   

19.
目的:本研究着重探讨中枢神经系统周细胞是否表达desmin。方法:取3周龄雄性Wistar大鼠,取其大脑和脊髓组织,分离提取培养脑微血管周细胞(BMP)和脊髓微血管周细胞(SCMP)两种周细胞,用周细胞非特异性标记物神经胶质抗原2(NG2)和α-平滑肌肌动蛋白(α-SMA)双标鉴定周细胞,并用免疫荧光方法定性定量测定两种周细胞表达desmin阳性率,免疫印记分析实验定量测定两种周细胞表达desmin。结果:观察刚分离得到的脑微血管和脊髓微血管,前者在长度和密度上多于后者,培养至第3天时,观察到BMP更趋向于聚集,而SCMP则更分散。培养至第9天时,两种周细胞基本铺满了培养皿。经用周细胞非特异性标记物NG2和α-SMA双标鉴定,确定分离得到的细胞为周细胞,免疫荧光和western blot实验结果表明两种周细胞均表达desmin,且SCMP表达desmin阳性率显著多于BMP(P0.001),SCMP表达desmin量显著多于BMP(P0.05)。结论:中枢神经系统周细胞表达结蛋白desmin,表达量不同暗示了血脑屏障和血脊髓屏障之间存在差异。  相似文献   

20.
The subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum lamina terminalis (OVLT), which are associated with the lamina terminalis, are important in the control of body fluid balance. Neurons in these regions express estrogen receptor (ER)-alpha, but whether the ER-alpha neurons are activated by hypertonicity and whether hypertonicity regulates ER-alpha expression are not known. Using fluorescent, double-label immunocytochemistry, we examined the expression of ER-alpha-immunoreactivity (ir) and Fos-ir in control and water-deprived male rats. In control animals, numerous ER-alpha-positive neurons were expressed in the periphery of the SFO, in both the dorsal and ventral MnPO, and in the dorsal cap of the OVLT. Fos-positive neurons were sparse in euhydrated rats but were numerous in the SFO, MnPO, and the dorsal cap of the OVLT after 48-h water deprivation. Most ER-alpha-ir neurons in these areas were positive for Fos, indicating a significant degree of colocalization. To examine the effect of dehydration on ER-alpha expression, animals with and without lesions surrounding the anterior and ventral portion of the 3rd ventricle (AV3V) were water deprived for 48 h. Water deprivation resulted in a moderate increase in ER-alpha-ir in the SFO of sham-lesioned rats (P = 0.03) and a dramatic elevation in AV3V-lesioned animals (P < 0.05). This was probably induced by the significant increase in plasma osmolality in both dehydrated groups (P < 0.001) rather than a decrease in blood volume, because hematocrit was significantly increased only in the dehydrated sham-lesioned animals. Thus these studies implicate the osmosensitive regions of the lamina terminalis as possible targets for sex steroid effects on body fluid homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号