首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. 'Delayed Fruit Deterioration' (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening 'Ailsa Craig'. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.  相似文献   

5.
6.
Kenneth Manning 《Planta》1998,205(4):622-631
The ripening of strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, is a complex developmental process that involves many changes in gene expression. To understand how these changes relate to the biochemistry and composition of the fruit the specific genes involved have been examined. A high-quality cDNA library prepared from ripe strawberry fruit was differentially screened for ripening-related clones using cDNA from ripe and white fruits. From 112 up-regulated clones obtained in the primary screen, 66 differentially expressed clones were isolated from the secondary screen. The partial sequences of these cDNAs were compared with database sequences and 26 families of non-redundant clones were identified. Northern analysis confirmed that all of these cDNAs were ripening-enhanced. The expression of many of their corresponding genes was negatively regulated in auxin-treated fruit. These sequences, several of which are novel to fruits, encode proteins involved in key metabolic events including anthocyanin biosynthesis, cell wall degradation, sucrose and lipid metabolism, protein synthesis and degradation, and respiration. These findings are discussed in relation to the role of these genes in determining fruit quality characteristics. Received: 19 January 1998 / Accepted: 5 February 1998  相似文献   

7.
8.
9.
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening.  相似文献   

10.
11.
12.
The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon.  相似文献   

13.
14.
15.
Depolymerization of cell wall xyloglucan has been proposed to be involved in tomato fruit softening, along with the xyloglucan modifying enzymes. Xyloglucan endotransglucosylase/hydrolases (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151) have been proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-bound xyloglucan, or restructuring the existing cell wall material by catalyzing transglucosylation between previously wall-bound xyloglucan molecules. Here, 10 tomato (Solanum lycopersicum) SlXTHs were studied and grouped into three phylogenetic groups to determine which members of each family were expressed during fruit growth and fruit ripening, and the ways in which the expression of different SlXTHs contributed to the total XET and XEH activities. Our results showed that all of the SlXTHs studied were expressed during fruit growth and ripening, and that the expression of all the SlXTHs in Group 1 was clearly related to fruit growth, as were SlXTH12 in Group 2 and SlXTH6 in Group 3-B. Only the expression of SlXTH5 and SlXTH8 from Group 3-A was clearly associated with fruit ripening, although all 10 of the different SlXTHs were expressed at the red ripe stage. Both total XET and XEH activities were higher during fruit growth, and decreased during fruit ripening. Ethylene production during tomato fruit growth was low and experienced a significant increase during fruit ripening, which was not correlated either with SlXTH expression or with XET and XEH activities. We suggest that the role of XTH during fruit development could be related to the maintenance of the structural integrity of the cell wall, and the decrease in XTHs expression, and the subsequent decrease in activity during ripening may contribute to fruit softening, with this process being regulated through different XTH genes.  相似文献   

16.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号