共查询到20条相似文献,搜索用时 0 毫秒
1.
Roostalu U Kutuev I Loogväli EL Metspalu E Tambets K Reidla M Khusnutdinova EK Usanga E Kivisild T Villems R 《Molecular biology and evolution》2007,24(2):436-448
More than a third of the European pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroup (hg) H, the most frequent hg throughout western Eurasia. Although there has been considerable recent progress in studying mitochondrial genome variation in Europe at the complete sequence resolution, little data of comparable resolution is so far available for regions like the Caucasus and the Near and Middle East-areas where most of European genetic lineages, including hg H, have likely emerged. This gap in our knowledge causes a serious hindrance for progress in understanding the demographic prehistory of Europe and western Eurasia in general. Here we describe the phylogeography of hg H in the populations of the Near East and the Caucasus. We have analyzed 545 samples of hg H at high resolution, including 15 novel complete mtDNA sequences. As in Europe, most of the present-day Near Eastern-Caucasus area variants of hg H started to expand after the last glacial maximum (LGM) and presumably before the Holocene. Yet importantly, several hg H subclades in Near East and Southern Caucasus region coalesce to the pre-LGM period. Furthermore, irrespective of their common origin, significant differences between the distribution of hg H sub-hgs in Europe and in the Near East and South Caucasus imply limited post-LGM maternal gene flow between these regions. In a contrast, the North Caucasus mitochondrial gene pool has received an influx of hg H variants, arriving from the Ponto-Caspian/East European area. 相似文献
2.
A set of 96 complete mtDNA sequences that belong to the three major African haplogroups (L1, L2, and L3) was analyzed to determine if mtDNA has evolved as a molecular clock. Likelihood ratio tests (LRTs) were carried out with each of the haplogroups and with combined haplogroup sequence sets. Evolution has not been clock-like, neither for the coding region nor for the control region, in combined sets of African haplogroup L mtDNA sequences. In tests of individual haplogroups, L2 mtDNAs showed violations of a molecular clock under all conditions and in both the control and coding regions. In contrast, haplogroup L1 and L3 sequences, both for the coding and control regions, show clock-like evolution. In clock tests of individual L2 subclades, the L2a sequences showed a marked violation of clock-like evolution within the coding region. In addition, the L2a and L2c branch lengths of both the coding and control regions were shorter relative to those of the L2b and L2d sequences, a result that indicates lower levels of sequence divergence. Reduced median network analyses of the L2a sequences indicated the occurrence of marked homoplasy at multiple sites in the control region. After exclusion of the L2a and L2c sequences, African mtDNA coding region evolution has not significantly departed from a molecular clock, despite the results of neutrality tests that indicate the mitochondrial coding region has evolved under nonneutral conditions. In contrast, control region evolution is clock-like only at the haplogroup level, and it thus appears to have evolved essentially independently from the coding region. The results of the clock tests, the network analyses, and the branch length comparisons all caution against the use of simple mtDNA clocks. 相似文献
3.
4.
Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA 总被引:4,自引:0,他引:4
Theories on molecular evolution predict that phylogenetically recent nonsynonymous mutations should contain more non-neutral amino acid replacements than ancient mutations. We analyzed 840 complete coding-region human mitochondrial DNA (mtDNA) sequences for nonsynonymous mutations and evaluated the mutations in terms of the physicochemical properties of the amino acids involved. We identified 465 distinct missense and 6 nonsense mutations. 48% of the amino acid replacements changed polarity, 26% size, 8% charge, 32% aliphaticity, 13% aromaticity, and 44% hydropathy. The reduced-median networks of the amino acid changes revealed relatively few differences between the major continent-specific haplogroups, but a high variation and highly starlike phylogenies within the haplogroups. Some 56% of the mutations were private, and 25% were homoplasic. Nonconservative changes were more common than expected among the private mutations but less common among the homoplasic mutations. The asymptotic maximum of the number of nonsynonymous mutations in European mtDNA was estimated to be 1,081. The results suggested that amino acid replacements in the periphery of phylogenetic networks are more deleterious than those in the central parts, indicating that purifying selection prevents the fixation of some alleles. 相似文献
5.
DNA重排及体外分子进化 总被引:1,自引:1,他引:1
DNA重排是目前为止最简便、最有效的体外定向进化技术,可以对单一基因、质粒、代谢途径、部分甚至整个基因组进行改造。本综述了DNA重排的基本原理、特点、与其它体外进化技术的不同,着重介绍了其在体外分子进化上的广泛应用,并对应用前景进行了展望。 相似文献
6.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes. 相似文献
7.
The majority of recent short DNA insertions in the human genome are tandem duplications 总被引:6,自引:0,他引:6
Nucleotide substitutions, insertions, and deletions constitute the principal molecular mechanisms generating genetic variation on small length scales. In contrast to substitutions, the nature of short DNA insertions and deletions (indels) is far less understood. With the recent availability of whole-genome multiple alignments between human and other primates, detailed investigations on indel characteristics and origin have come within reach. Here, we show that the majority of short (1-100 bp) DNA insertions in the human lineage are tandem duplications of directly adjacent sequence segments with conserved polarity. Indels in microsatellites comprise only a small fraction. The underlying molecular processes generating indels do not necessarily rely on the presence of preexisting duplicates, as would be expected for unequal crossing over, as well as replication slippage. Instead, our findings point toward a mechanism that preferentially occurs in the male germline and is not recombination-mediated. Surprisingly, nonframeshifting tandem duplications and deletions in coding regions still occur at approximately 50% of their genomic background rates. As is already well established in the context of gene and segmental duplications, our results demonstrate that duplications are also likely to constitute the predominant process for rapid generation of new genetic material and function on smaller scales. 相似文献
8.
《Critical reviews in biochemistry and molecular biology》2013,48(1):64-74
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. 相似文献
9.
Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence‐based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai‐Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above‐mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite‐based Bayesian clustering clearly identified three groups (Qionglai‐Liangshan, Xiaoxiangling and Gaoligong‐Tibet). A significant isolation‐by‐distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large‐scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai‐Tibetan Plateau, subspecies classification and conservation of red pandas are discussed. 相似文献
10.
B. A. Malyarchuk 《Molecular Biology》2008,42(3):399-402
The distribution of mutations in hypervariable segment 1 (HVS1) of mitochondrial DNA (mtDNA) was analyzed for more than 37000 individuals from various regions of the world. The results were used to estimate the intensity of mutation processes and the features of the cold spot distribution in mtDNA. Analysis of the structural-functional organization and variation of HVS1 made it possible to associate a lower variation with functionally important HVS1 regions. The distribution of CAT cold spots in secondary DNA structures revealed a lack of correlation between the cold spot location and the structural type of the mtDNA region. 相似文献
11.
12.
mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory 总被引:5,自引:0,他引:5
The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past. 相似文献
13.
Erika Hagelberg 《Evolutionary anthropology》1993,2(6):199-207
Now that the hype surrounding Jurassic Park has settled down and we have become relatively used to dramatic headlines announcing the recovery of DNA from exotic fossilized remains, scientists working on ancient DNA are beginning to reflect on the long-term prospects and implications of the subject.1 The science of ancient DNA has grown exponentially since its birth only ten years ago, and despite serious technical difficulties, it promises to become a revolutionary research tool in anthropology and molecular evolution. The use of bone DNA typing in particular has already yielded useful insights into Polynesian prehistory as well as spectacular applications in the forensic identification of skeletal remains. 相似文献
14.
15.
A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus 总被引:3,自引:0,他引:3
The evolution, taxonomy and conservation of the genus Equuswere investigated by examining the mitochondrial DNA sequences of thecontrol region and 12S rRNA gene. The phylogenetic analysis of thesesequences provides further evidence that the deepest node in thephylogeny of the extant species is a divergence between twolineages; one leading to the ancestor of modern horses (E.ferus, domestic and przewalskii) and the other to thezebra and ass ancestor, with the later speciation events of the zebrasand asses occurring either as one or more rapid radiations, or withextensive secondary contact after speciation. Examination of the geneticdiversity within species suggested that two of the E. hemionussubspecies (E. h. onager and E. h. kulan) onlyrecently diverged, and perhaps, are insufficiently different to beclassified as separate subspecies. The genetic divergence betweendomestic and wild forms of E. ferus (horse) and E.africanus (African ass) was no greater than expected within anequid species. In E. burchelli (plains zebra) there was anindication of mtDNA divergence between populations increasing withdistance. The implications of these results for equid conservation arediscussed and recommendations are made for conservation action. 相似文献
16.
17.
人类线粒体DNA世系的系统发育关系研究 总被引:1,自引:0,他引:1
本文以人类线粒体DNA为例,回顾了其系统发育关系的重建的研究历史,进而总结介绍了该分析方法在人类进化历史研究、线粒体DNA数据质量评估以及疾病相关线粒体DNA突变的甄别等方面的应用,以期对该方法在国内的推广应用有所裨益。 相似文献
18.
A molecular phylogenetic analysis was conducted on all of the known catadromous eel species of the genus Anguilla to assess their relationships and evolutionary history. The analyses of a total of 1427 bp of the mitochondrial 16S ribosomal RNA and 1140 bp of the complete cytochrome b gene sequences suggested that the genus Anguilla was monophyletic in origin, with A. borneensis as the most basal species. Four clades/species groups that correspond to their geographical ranges were indicated, Indo-Atlantic (three species), Oceania (two species), tropical Pacific (two species), and Indo-Pacific (five species), with ambiguous positions for A. japonica and A. reinhardti. This grouping conflicts with that of a previous morphological study, since the broad undivided maxillary and short-fin type, which were thought to be phylogenetically important, were paraphyletic in the molecular analysis. However, the molecular phylogeny and the present geographic distribution of species suggested historical dispersion of the genus Anguilla according to the Tethys corridor hypothesis, which proposed that anguillid eels originated near present-day Indonesia and dispersed westward along paleo-circumglobal equatorial currents. The westward-moving strain entered the paleo-Atlantic through the Tethys Sea and was ancestral to present-day European and American species. 相似文献
19.
Malmström H Storå J Dalén L Holmlund G Götherström A 《Molecular biology and evolution》2005,22(10):2040-2047
Ancient DNA (aDNA) sequences, especially those of human origin, are notoriously difficult to analyze due to molecular damage and exogenous DNA contamination. Relatively few systematic studies have focused on this problem. Here we investigate the extent and origin of human DNA contamination in the most frequently used sources for aDNA studies, that is, bones and teeth from museum collections. To distinguish contaminant DNA from authentic DNA we extracted DNA from dog (Canis familiaris) specimens. We monitored the presence of a 148-bp human-specific and a 152-bp dog-specific mitochondrial DNA (mtDNA) fragment in DNA extracts as well as in negative controls. The total number of human and dog template molecules were quantified using real-time polymerase chain reaction (PCR), and the sequences were characterized by amplicon cloning and sequencing. Although standard precautions to avoid contamination were taken, we found that all samples from the 29 dog specimens contained human DNA, often at levels exceeding the amount of authentic ancient dog DNA. The level of contaminating human DNA was also significantly higher in the dog extracts than in the negative controls, and an experimental setup indicated that this was not caused by the carrier effect. This suggests that the contaminating human DNA mainly originated from the dog bones rather than from laboratory procedures. When cloned, fragments within a contaminated PCR product generally displayed several different sequences, although one haplotype was often found in majority. This leads us to believe that recognized criteria for authenticating aDNA cannot separate contamination from ancient human DNA the way they are presently used. 相似文献
20.
Phylogeny of human beta-globin haplotypes and its implications for recent human evolution 总被引:1,自引:0,他引:1
J C Long A Chakravarti C D Boehm S Antonarakis H H Kazazian 《American journal of physical anthropology》1990,81(1):113-130
The evolutionary histories and relationships among African, Eurasian, and Pacific Island populations are investigated by using observations on five polymorphic restriction sites in the beta-globin gene cluster. We present new data on 222 chromosomes from a global sample and combine these with previously published observations on 591 chromosomes. It is shown that the data are rich in rare haplotypes and that rare variants are not helpful for standard methods of population structure analysis. Consequently, a new approach is developed. We first consider the phylogeny of beta-globin haplotypes. The roles of mutation, gene conversion, and recombination in the generation of haplotype diversity are specifically focused upon. The relationships among human populations are then inferred from the phylogenetic relationships among the haplotypes, their presence or absence, and frequencies within populations. Questions regarding whether or not a phyletic process can account for relationships among the major geographical populations and whether or not an extant human population exhibits the qualities that would be expected of an ancestral group are addressed. The results of this analysis support an African origin for modern Homo sapiens and a phyletic structuring of the major geographical regions. However, it is shown that divergence times for the various populations cannot be determined from these data. 相似文献