首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
长吻鮠精巢发育的分期及精子的发生和形成   总被引:11,自引:0,他引:11  
长吻鮠精巢的发育分为精原细胞增殖期、精母细胞生长期、精母细胞成熟期、精子细胞出现期,精子完全成熟期和精子退化吸收期。精巢的后1/3不产生也不贮存精子,精子的发生和形成经过精原细胞、精母细胞、精子细胞到精子的一系列过程。精原细胞有两种类型。精子无顶体,有中心粒帽,中片长,核凹窝和线粒体发达,鞭毛具侧鳍。  相似文献   

2.
长吻wei精巢发育的分期及精子的发生和形成   总被引:16,自引:2,他引:14  
长吻wei精巢的发育分为精原细胞增殖期、精母细胞生长期、精母细胞成熟期、精子细胞出现期、精子完全成熟期和精子退化吸收期。精巢的后1/3不产生也不贮存精子,精子的发生和形成经过精原细胞、精母细胞、精子细胞到精子的一系列过程。精原细胞有两种类型。精子无顶体,有中心粒帽,中片长,核凹窝和线粒体发达,鞭毛具侧鳍。  相似文献   

3.
香螺精子发生及精子超微结构   总被引:5,自引:0,他引:5  
侯林  高岩  邹向阳  毕相东 《动物学报》2006,52(4):746-754
本文采用透射电镜技术对香螺(NpatunedecumingiCrosse)精子发生过程进行了观察。结果表明,精原细胞胞质中含有大量的线粒体;初、次级精母细胞的细胞核和大量的线粒体呈极性分布;精子细胞分化过程中,细胞核形态、核内物质以及线粒体的形态发生显著变化;细胞核的核质由不均匀颗粒状浓缩成纤丝状,再浓缩成细线形,最后呈致密均匀状态,细胞核由近圆形伸长为粗线形,具有核后窝;在细胞核后端有8个膨大的线粒体,由卵圆形变为螺旋形,弯曲盘绕在轴丝外部,形成精子的中段;根据细胞核和线粒体的变化特点,将精子形成分为早、中、后三个时期。香螺典型性精子属于进化型,头部呈线形,中段加长,糖原颗粒包围轴丝构成主段。在精子发生过程中,细胞质内没有发达的高尔基复合体和前顶体池,没有观察到香螺精子的顶体。在成熟个体的精巢内,同时存在不具有受精能力的畸变精子。  相似文献   

4.
为了探究可口革囊星虫(Phascolosoma esculenta)精子发生过程及结构上的特殊性,用显微及亚显微技术研究了可口革囊星虫的精子发生和精子结构。可口革囊星虫的精巢位于收吻肌基部,为一曲折的带状组织。成熟精巢内可观察到精原细胞、精母细胞以及精细胞等各阶段的生精细胞。在精子形成早期,很多精细胞脱离精巢,以精细胞团的形式掉落到体腔中。精细胞团内的精细胞同步发育为精子后,脱离精子团进入肾管。成熟精子由头部和尾部组成。头部由钟形顶体与鼓形细胞核构成。顶体后段下包于精核的前端。顶体分内、中、外三层,外层有横隔;顶体下腔内有颗粒状物质不均匀分布,中央有一束丝状纤维组成的顶体棒。核物质电子密度高,核内含空泡。无核前窝,具浅的核后窝。尾部分中段和末段,中段由6个(偶见5个或7个)线粒体围绕近、远端中心粒构成;末段细长鞭状,由轴丝及包绕轴丝的质膜组成,轴丝为典型的"9 2"结构。分析认为:可口革囊星虫精子发生过程以及超微结构上存在特殊的结构与机制:①精细胞团保证了精子形成的同步性;②顶体后段下包于精核的前端使精子头部小而灵巧,利于快速运动;③顶体的横隔使精子顶体的牢固性增强,确保受精时顶体反应的正常进行;④中段较多的线粒体使精子具有更强的环境适应性,有利于有效的受精。  相似文献   

5.
耳河螺生殖器官和精子的形态学研究   总被引:6,自引:0,他引:6  
周永灿 《动物学报》1996,42(4):343-348
耳河螺「Rivularia auriculata (Martens)」为雌雄异体。雄性生殖器官由精巢,输精小管,贮精囊,输精管,前列腺和阴茎组成。精巢内有精子,精子有典型精子和非典型精子两种。扫描电镜下,典型精子头部呈螺旋状,尾端只有一根较粗壮;非典型精子头部和中部为棒状,尾部呈扫帚状,由8-15根鞭毛组成。  相似文献   

6.
三角帆蚌精子的发生   总被引:8,自引:1,他引:7  
报道了光镜和透射电镜下三角帆蚌精子的发生过程及其一系列重要的形态变化。包括核延长,染色质浓缩,线粒体逐渐融合并后移;胞质减少及鞭毛形成,精原细胞是精巢中体积最大的细胞,细胞膜界限不明显,内质网发达,精母细胞开始出现中心粒,精细胞分化可分为3个阶段。成熟精子属原生型,由头部、中段和尾部三部分组成。  相似文献   

7.
用透射电镜和扫描电镜观察隆线精子的发生过程及成熟精子的超微结构。隆线精子发生经历精原细胞、精母细胞、精子细胞和成熟精子四个时期。精原细胞核染色质凝集成团,细胞质内有线粒体、粗面内质网分布。精母细胞核染色质分散,不均匀地分布于核中,细胞质内粗面内质网聚集。在精子细胞分化形成精子的早期,细胞纵向拉伸,核物质开始浓缩;中期精子细胞呈明显的长条形,精子细胞逐渐移入精巢管腔中央,外围包裹一厚层精子鞘;后期精子细胞已进入管腔中,核物质呈高度浓缩状,细胞质层较少,精子细胞间通过外围精子鞘相互粘连成片。成熟精子分散在精巢管腔中央,外形呈棒状,一端稍钝,一端稍尖,无鞭毛、棘突等附属物;核内染色质解聚,均匀分布在核中,具双层核膜,细胞质层很少,精子鞘为单层,无法确认顶体端。隆线雄性生殖细胞的结构及其发生过程均较高等甲壳动物简单和原始,但在功能上表现出相对的适应性,使以隆线为代表的枝角类能适应复杂多变的生活环境  相似文献   

8.
本研究主要采用透射电镜观察粉尘螨Dermatophagoides farinae (Hughes)生殖系统超微结构。粉尘螨雄性生殖系统是由精巢、 输 精管、 附腺、 射精管、 交配器官及附属交配器官组成。精巢内可同时有精子发育各阶段的细胞。精子无核膜、 核染色质聚集成束、 线 粒体缺乏典型的嵴、 胞质内有平行排列的电子致密薄片等为其特征性结构。雌性生殖系统由交合囊、 交合囊管、 储精囊、 囊导管、 卵 巢、 输卵管、 子宫及产卵管构成。卵巢内可见含多个细胞核的中央细胞, 其周为卵母细胞等生殖细胞。该研究丰富了对粉尘螨生殖系统 结构的认识。  相似文献   

9.
粗糙沼虾精巢发育的组织学   总被引:1,自引:1,他引:0  
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

10.
通过研究壬基酚对雄性黑斑蛙(Rana nigromaculata)成体的精子和精巢的影响,探讨壬基酚对黑斑蛙的生殖毒性.用不同剂量的壬基酚对雄性黑斑蛙进行处理,对黑斑蛙的精巢系数、精子数、形态结构、畸形率和精巢显微结构等分别进行研究.结果表明,与对照组相比,随着壬基酚浓度的升高,染毒组黑斑蛙的精巢系数下降,精子数减少,精子畸形率明显增大;畸形精子主要表现为其头部出现肥大、弯曲和圆形等现象;精巢显微结构发生变化,表现为生精小管萎缩,生精细胞层次减少,间质区不明显.说明壬基酚对雄性黑斑蛙生殖系统具有毒性效应.  相似文献   

11.
金鱼精巢的细胞构造与精子的发生和形成   总被引:40,自引:2,他引:38  
  相似文献   

12.
Trout testes at various stages of maturation were dissociated by perfusion at 12°C with collagenase plus pronase and then with collagenase alone, followed by slight shaking overnight in 1% bovine albumin. This step provided a suspension of isolated somatic and germ cells, clusters of interstitial cells, and either intact spermatogenetic cysts (meiotic testes) or clusters of Sertoli cells (other testes). Most of the spermatozoa were removed from the testis cell suspension by centrifugation in Percoll (density 1.065 g/ml). Sertoli and Leydig cells were prepared by a two-step separation method: (1) the testis cell suspension was separated by sedimentation at unit gravity into “isolated cell” and “cell cluster” populations; (2) these populations were fractionated by isopyknic centrifugation in Percoll gradients. In terms of somatic cell composition, a nearly pure Sertoli cell (clusters) population was obtained between 1.017 and 1.033 g/ml and a Leydig cell (clusters) enriched population of between 1.033 and 1.048 g/ml (testes resuming spermatogenesis) or 1.048 and 1.062 g/ml (other testes). These various cell populations were cultured in modified Leibovitz L15 medium for 10–15 days. When seeded, the Sertoli cells had a normal ultrastructure that remained unchanged for at least 10 days, and the steroidogenic activity of Leydig cells could be stimulated by salmon gonadotropin. Leydig cells remained 3β-HSD positive and produced progesterone and 17α, 20β-OH progesterone for at least 11 days. This study points out that viable and differentiated trout somatic testicular cells can be prepared and cultured for several days.  相似文献   

13.
The walls of lobules in the testis of Ophidion sp. are composed of Scrtoli cells and young germinal cells (spermatogonia and spermatocytes). Spermatocytes are linked by cytoplasmic bridges. The associations of Sertoli cells and spermatocytes constitute true cysts. Meiosis takes place in the cysts. When meiosis is complete, cysts open. Spermatids are released into the lumen of the lobules and the cyloplasmic bridges break down. Spermiogenesis occurs in the lumen. Spermatids at various levels of spermiogenesis are then mixed with ripe spermatozoa. In teleosts we thus recognize two types of spermatogenesis: a cystic type where spermatogenesis is completed within cysts, and leads to synchronous development of germ-cells; and a semi-cystic type, where spermatogenesis occurs partly outside cysts. This may produce asynchronous spermatogenesis.  相似文献   

14.
15.
16.
The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates will increasingly clarify our understanding of vertebrate reproduction. J. Morphol. 277:1014–1044, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Sperm protein 17 (Sp17) is a highly conserved mammalian protein whose primary function is still poorly understood. Immunohistochemistry (IHC) in the human testis reveals the presence of Sp17 in some spermatocytes and abundantly in spermatids. All spermatogonia, Sertoli cells, and Leydig cells appear to be immunonegative for Sp17, whereas some interstitial cells are immunopositive. IHC recognized two distinct populations (immunopositive or not for Sp17) in the ejaculated spermatozoa. Although it will be necessary to clarify why some ejaculated spermatozoa do not contain Sp17, its distribution suggests that this protein may be associated with some phases of germinal cell differentiation.  相似文献   

18.
The elongate paired testes of Sebastodes paucispinis consist of tubules which radiate from a single longitudinal sperm duct and terminate blindly at the periphery of the testis. They are lined by an epithelium consisting of columnar cells with distinct elliptical nuclei. During fall and winter, germ cells migrate inward from the fibrous capsule of the testis and become lodged among the tubule-boundary cells of the seminiferous tubules where they mature into primary spermatogonia. Each of these undergoes several mitotic divisions to produce large cysts of secondary spermatogonia. Subsequent spermatogenic divisions within these cysts produce large sperm-filled cysts which rupture, releasing the spermatozoa into the lumina of the seminiferous tubules. Seasonal cycles of cholesterol and carbohydrate production by the tubule-boundary cells suggest that they perform the same functions as the Leydig cells (androgen production) and Sertoli cells (nutrition) of other vertebrates. The paired fusiform ovaries consist of spongy tissue surrounded by thin-walled muscular ovisacs that converge posteriorly to form a genital duct. The spongy tissue is arranged in transverse lamellae composed of fibrovascular trunks which support epithelial and ovigerous tissue. A series of oocytes (up to 150 μ in diameter) is produced continually from oogonial nests distributed throughout each lamella. Vitellogenesis begins in July and continues throughout the summer. The follicle surrounding the mature oocyte consists of a bilaminar striated vitelline membrane, two epithelial layers (granulosa and theca), and a profuse capillary network. Spermatozoa appear within the ovaries from October to March. Ovulation probably precedes fertilization since spermatozoa were never found within pre-ovulatory or post-ovulatory follicles. The follicular epithelium regresses after ovulation but the capillary beds remain intact, thus providing a mechanism for fetal-maternal exchange of gases and nitrogenous wastes.  相似文献   

19.
The testis of Japanese eel (Anguilla japonica) consists of type A and early type B spermatogonia together with inactive Leydig and Sertoli cells. A single injection of human chorionic gonadotropin induced marked changes in the morphology of the testis and in the serum androgen levels within a period of 72 h. Morphological changes include spermatogonial proliferation, activation of Leydig and Sertoli cells, organization of seminiferous lobules and formation of lobular lumen in the testis. Leydig cells were enlarged, exhibiting characteristics of steroid-producing cells. Sertoli cells become elongated, show signs of high cellular activity and remain in close contact with spermatogonia. The lobular organization was achieved much earlier than the progression of spermatogenesis to late type B spermatogonia. Even 6 h after hCG injection, a significant increase in plasma levels of 11-ketotestosterone was observed, followed by a further time dependent increase. Plasma testosterone levels were also increased after injection, but the increase was much less than that of 11-ketotestosterone.  相似文献   

20.
The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells during the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the germinal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Sertoli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the presence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus marmoratus has a permanent germinal epithelium. Differences between the germinal compartment of the testes of primary and secondary males were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号