首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentration of glutamate within the glutamatergic synapse is tightly regulated by the excitatory amino-acid transporters (EAATs). In addition to their primary role of clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl conductance. Several crystal structures of an archaeal EAAT homolog, GltPh, at different stages of the transport cycle have been solved. In a recent structure, an aqueous cavity located at the interface of the transport and trimerization domains has been identified. This cavity is lined by polar residues, several of which have been implicated in Cl permeation. We hypothesize that this cavity opens during the transport cycle to form the Cl channel. Residues lining this cavity in EAAT1, including Ser-366, Leu-369, Phe-373, Arg-388, Pro-392, and Thr-396, were mutated to small hydrophobic residues. Wild-type and mutant transporters were expressed in Xenopus laevis oocytes and two-electrode voltage-clamp electrophysiology, and radiolabeled substrate uptake was used to investigate function. Significant alterations in substrate-activated Cl conductance were observed for several mutant transporters. These alterations support the hypothesis that this aqueous cavity at the interface of the transport and trimerization domains is a partially formed Cl channel, which opens to form a pore through which Cl ions pass. This study enhances our understanding as to how glutamate transporters function as both amino-acid transporters and Cl channels.  相似文献   

2.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   

3.
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 ± 34 pS and 74 ± 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K+ and Cl with their first solvation shells intact. The free energy barrier encountered by K+ is only 2.2 kcal/mol whereas Cl encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.  相似文献   

4.
In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl-dependent short circuit current (ISC) response, consistent with net transepithelial Cl secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated ISC responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated ISC by about 40%, suggesting that basolateral uptake of Cl is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl channel to mediate cAMP-activated Cl secretion.  相似文献   

5.
Individual ionic channels were shown to be formed in the brain cholesterol containing phospholipid membranes by two-sided addition of the amphotericin B alkyl derivatives. At concentrations between 10−8 and 10−7 M, the resulting conductance appeared to be transient. Existence of different antibiotic assemblies was justified by the kinetic analysis of the membrane conductance decline following the antibiotic washing out. In order to account for the transient characteristics of the induced conductance, it was proposed that the antibiotic oligomers incorporate into the membrane from the aqueous phase, form channels aggregating with cholesterol, and then dissociate in the bilayer into non-active degraded oligomeric or monomeric forms.  相似文献   

6.
The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange (cycGE) was significantly higher in animals with unblocked spiracles (18.7 nmol g−1 min−1 vs. 7.9 nmol g−1 min−1). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates.  相似文献   

7.
The affinity for dissolved inorganic carbon (DIC) and the mechanisms to use HCO3 as a source of DIC for photosynthesis were investigated in two morphotypes of Zostera noltii Hornem. Both morphotypes were collected at Ria Formosa lagoon (Southern Portugal) at two different levels in the intertidal. Affinity for DIC at saturating photon fluence rate (PFR), estimated as photosynthetic conductance for CO2 (gp(CO2)), was reduced by 75% in the Z. noltii plants adapted to shade conditions (lower intertidal) in comparison to the sun morphotype (45×10−6 and 182×10−6 m s−1, respectively), indicating that the plants acclimated to sun conditions (higher intertidal) had a higher capacity to use HCO3 as DIC source for photosynthesis. Since external carbonic anhydrase activity was negligible and a large inhibitory effect was produced by Tris buffer addition, this HCO3 use was attributed to the operation of H+ ATPases creating low pH zones in periplasmic space. The photosynthetic CO2-flux supported for this mechanism was calculated to be 53 μmol O2 m−2 s−1 in sun morphotype, about 80% out of maximum photosynthesis rate. In order to determine the possible photosynthetic energy cost of the HCO3 use, the effect of decreasing light on photosynthetic rates and gp(CO2) was estimated. Photosynthetic conductance decreased in both morphotypes at non-saturating PFR. This dependence of gp(CO2) on PFR indicated the existence of a positive interactive effect between DIC and PFR which was more pronounced in the shade morphotype since the ascending slope of O2 evolution vs. PFR curves at limiting PFRs was reduced from 7.2 to 2.3 mmol O2 mol photon−1 at 4 and 0.5 mol m−3 of DIC, respectively.  相似文献   

8.
To reveal the mechanism of transpiration by hydrophytes in the field, it is necessary to evaluate the transpiration rate without the effect of the evaporation from the water surface. In order to test the suitability for evaluating the transpiration rate of lotus (Nelumbo nucifera Gaertn.) leaves in the field, stem heat-balance method was applied and the obtained sap-flow rate was compared with the transpiration rate measured by weighing and with the overall canopy evapotranspiration rate by means of the eddy covariance technique. The transpiration rate estimated with the sap-flow measurements showed good agreement with that obtained from the weighing method. Lotus has many air canals in its petiole to carry oxygen-rich air to the rhizome and methane- and carbon dioxide-rich air back to the atmosphere, but there was little effect of the mass flow of air through these canals on the sap-flow rates. In the field observations, the canopy evapotranspiration rate (0.28 mm h−1 at maximum) was nearly equal to the sum of the transpiration rate from all sunlit leaves (0.30 mm h−1), and the contribution of the transpiration from shaded leaves and evaporation from the water surface was considered to be minor in the seasons when the leaves were fully developed. Evaluation of bulk leaf conductance revealed that the conductance in the leaf boundary layer of lotus could be low (ca. 0.23 mol m−2 s−1) because of its large leaf area. The low conductance in the leaf boundary layer would increase leaf temperature, which, in turn, would generate air circulation within the plant's ventilation system. Because there was a linear relationship between transpiration rate and the leaf-to-air vapor-pressure deficit, with no apparent maximum, high vapor-pressure deficits (3.4 kPa at maximum) did not appear to cause significant stomatal closure in lotus plants. The stomata of lotus leaves play a role as air inlets to carry oxygen-rich air to the rhizome, so their low sensitivity would help to increase air intake.  相似文献   

9.
10.
The electrical conductance of ions across the peritoneal membrane of young buffalo (approximately 18-24 months old) has been recorded. Aqueous solutions of NaF, NaNO3, NaCl, Na2SO4, KF, KNO3, KCl, K2SO4, MgCl2, CaCl2, CrCl3, MnCl2, FeCl3, CoCl2, and CuCl2 were used. The conductance values have been found to increase with increase in concentration as well as with temperature (15 to 35 °C) in these cases. The slope of plots of specific conductance, κ, versus concentration exhibits a decrease in its values at relatively higher concentrations compared to those in extremely dilute solutions. Also, such slopes keep on increasing with increase in temperature. In addition, the conductance also attains a maximum limiting value at higher concentrations in the said cases. This may be attributed to a progressive accumulation of ionic species within the membrane. The κ values of electrolytes follow the sequence for the anions: SO42−>Cl>NO3>F while that for the cations: K+>Na+>Ca2+>Mn2+>Co2+>Cu2+>Mg2+>Cr3+>Fe3+. In addition, the diffusion of ions depends upon the charge on the membrane and its porosity. The membrane porosity in relation to the size of the hydrated species diffusing through the membrane appears to determine the above sequence. As the diffusional paths in the membrane become more difficult in aqueous solutions, the mobility of large hydrated ions gets impeded by the membrane framework and the interaction with the fixed charge groups on the membrane matrix. Consequently, the membrane pores reduce the conductance of small ions, which are much hydrated. An increase in conductance with increase in temperature may be due to the state of hydration, which implies that the energy of activation for the ionic transport across the membrane follows the sequence of crystallographic radii of ions accordingly. The Eyring's equation, κ=(RT/Nh)exp[−ΔH*/RT]exp[ΔS*/R], has been found suitable for explaining the temperature dependence of conductance in the said cases. This is apparent from the linear plots of log[κNh/RT] versus 1/T. The results indicate that the permeation of ions through the membrane giving negative values of ΔS* suggest that there may be formation of either covalent linkage between the penetrating ions and the membrane material or else the permeation may not be the rate-determining step. On the one hand, a high ΔS* value associated with the high value of energy of activation, Ea, for diffusion may suggest the existence of either a large zone of activation or loosening of more chain segments of the membrane. On the other hand, low value of ΔS* implies that converse is true in such cases, i.e., either a small zone of activation or no loosening of the membrane structure upon permeation.  相似文献   

11.
Basal metabolic rate (BMR) is thought to be a major hub in the network of physiological mechanisms connecting life history traits. Evaporative water loss (EWL) is a physiological indicator that is widely used to measure water relations in inter- or intraspecific studies of birds in different environments. In this study, we examined the physiological responses of summer-acclimatized Hwamei Garrulax canorus to temperature by measuring their body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 40 °C. Overall, we found that mean body temperature was 42.4 °C and average minimum thermal conductance (C) was 0.15 ml O2 g−1 h−1 °C−1 measured between 5 and 20 °C. The thermal neutral zone (TNZ) was 31.8–35.3 °C and BMR was 181.83 ml O2 h−1. Below the lower critical temperature, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 h−1)=266.59–2.66 Ta. At Tas above the upper critical temperature, MR increased with Ta according to the relationship: MR (ml O2 h−1)=−271.26+12.85 Ta. EWL increased with Ta according to the relationship: EWL (mg H2O h−1)=−19.16+12.64 Ta and exceeded metabolic water production at Ta>14.0 °C. The high Tb and thermal conductance, low BMR, narrow TNZ, and high evaporative water production/metabolic water production (EWP/MWP) ratio in the Hwamei are consistent with the idea that this species is adapted to warm, mesic climates, where metabolic thermogenesis and water conservation are not strong selective pressures.  相似文献   

12.
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca2 + channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na+/HCO3 co-transporter NBCe1-B, the Na+/H+ exchanger NHE3, the Cl channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl/HCO3 exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

13.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

14.
Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27Kip1, which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Skp2−/− mouse embryonic fibroblasts, encouraging us to generate Cdk2−/−Skp2−/− double knockout mice. Cdk2−/−Skp2−/− double knockout mice are viable and display similar phenotypes as Cdk2−/− and Skp2−/− mice. Unexpectedly, fibroblasts generated from Cdk2−/−Skp2−/− double knockout mice proliferated at normal rates. The increased stability of p27 observed in Skp2−/− MEFs was not observed in Cdk2−/−Skp2−/− double knockout fibroblasts indicating that in the absence of Cdk2, p27 is regulated by Skp2-independent mechanisms. Ablation of other ubiquitin ligases for p27 such as KPC1, DDB1, and Pirh2 did not restore stability of p27 in Cdk2−/−Skp2−/− MEFs. Our findings point towards novel and alternate pathways for p27 regulation.  相似文献   

15.
Fluid and electrolyte releasing from secretory epithelia are elaborately regulated by orchestrated activity of ion channels. The activity of chloride channel at the apical membrane decides on the direction and the rate of secretory fluid and electrolyte. Chloride-dependent secretion is conventionally associated with intracellular increases in two second messengers, cAMP and Ca2+, responding to luminal purinergic and basolateral adrenergic or cholinergic stimulation. While it is broadly regarded that cAMP-dependent Cl secretion is regulated by cystic fibrosis transmembrane conductance regulator (CFTR), Ca2+-activated Cl channel (CaCC) had been veiled for quite some time. Now, Anoctamin 1 (ANO1 or TMEM16A) confers Ca2+-activated Cl currents. Ano 1 and its paralogs have been actively investigated for multiple functions underlying Ca2+-activated Cl efflux and fluid secretion in a variety of secretory epithelial cells. In this review, we will discuss recent advances in the secretory function and signaling of ANO1 in the secretory epithelia, such as airways, intestines, and salivary glands.  相似文献   

16.
Ricardo Murphy 《BBA》2006,1757(8):996-1011
The phagocyte NADPH oxidase produces superoxide anion (O2·−) by the electrogenic process of moving electrons across the cell membrane. This charge translocation must be compensated to prevent self-inhibition by extreme membrane depolarization. Examination of the mechanisms of charge compensation reveals that these mechanisms perform several other vital functions beyond simply supporting oxidase activity. Voltage-gated proton channels compensate most of the charge translocated by the phagocyte NADPH oxidase in human neutrophils and eosinophils. Quantitative modeling of NADPH oxidase in the plasma membrane supports this conclusion and shows that if any other conductance is present, it must be miniscule. In addition to charge compensation, proton flux from the cytoplasm into the phagosome (a) helps prevent large pH excursions both in the cytoplasm and in the phagosome, (b) minimizes osmotic disturbances, and (c) provides essential substrate protons for the conversion of O2·− to H2O2 and then to HOCl. A small contribution by K+ or Cl fluxes may offset the acidity of granule contents to keep the phagosome pH near neutral, facilitating release of bactericidal enzymes. In summary, the mechanisms used by phagocytes for charge compensation during the respiratory burst would still be essential to phagocyte function, even if NADPH oxidase were not electrogenic.  相似文献   

17.
The Cl channels of brown adipocytes electrophysiologically resemble outwardly rectifying Cl channels (ORCC). To study tentative Ca2+ regulation of these channels, we attempted to control Ca2+ levels at the cytoplasmic side of the inside-out membrane patches with Ca2+-chelating agents. However, we found that the commonly used Ca2+-chelators EGTA and BAPTA by themselves influenced the Cl channel currents, unrelated to their calcium chelating effects. Consequently, in this report we delineate effects of Ca2+-chelators (acting from the cytoplasmic side) on the single Cl channel currents in patch-clamp experiments. Using fixed (1-2 mM) concentrations of chelators, two types of Cl channels were identified, as discriminated by their reaction to the Ca2+-chelators and by their conductance: true-blockage channels (31 pS) and quasi-blockage channels (52 pS). In true-blockage channels, EGTA and BAPTA inhibited channel activity in a classical flickery type manner. In quasi-blockage channels, chelators significantly shortened the duration of individual openings, as in a flickering block, but the overall channel activity tended to increase. This dual effect of mean open time decrease accompanied by a tendency of open probability to increase we termed a quasi-blockage. Despite the complications due to the chelators as such, we could detect a moderate inhibitory effect of Ca2+. The anionic classical Cl channel blockers DIDS and SITS could mimic the true/quasi blockage of EGTA and BAPTA. It was concluded that at least in this experimental system, standard techniques for Ca2+ level control in themselves could fundamentally affect the behaviour of Cl channels.  相似文献   

18.
We construct a mathematical model of the parotid acinar cell with the aim of investigating how the distribution of K+ and Cl channels affects saliva production. Secretion of fluid is initiated by Ca2+ signals acting on Ca2+ dependent K+ and Cl channels. The opening of these channels facilitates the movement of Cl ions into the lumen which water follows by osmosis. We use recent results into both the release of Ca2+ from internal stores via the inositol (1,4,5)-trisphosphate receptor (IP3R) and IP3 dynamics to create a physiologically realistic Ca2+ model which is able to recreate important experimentally observed behaviours seen in parotid acinar cells. We formulate an equivalent electrical circuit diagram for the movement of ions responsible for water flow which enables us to calculate and include distinct apical and basal membrane potentials to the model. We show that maximum saliva production occurs when a small amount of K+ conductance is located at the apical membrane, with the majority in the basal membrane. The maximum fluid output is found to coincide with a minimum in the apical membrane potential. The traditional model whereby all Cl channels are located in the apical membrane is shown to be the most efficient Cl channel distribution.  相似文献   

19.
Cortical interneurons in rodents are generated in the ventral telencephalon and migrate tangentially into the cortex. This process requires the coordinated action of many intrinsic and extrinsic factors. Here we show that Robo1 and Robo2 receptor proteins are dynamically expressed throughout the period of corticogenesis and colocalize with interneuronal markers, suggesting that they play a role in the migration of these cells. Analysis of Robo mutants showed a marked increase in the number of interneurons in the cortices of Robo1−/−, but not Robo2−/−, animals throughout the period of corticogenesis and in adulthood; this excess number of interneurons was observed in all layers of the developing cortex. Using BrdU incorporation in dissociated cell cultures and phosphohistone-3 labeling in vivo, we demonstrated that the increased number of interneurons in Robo1−/− mice is, at least in part, due to increased proliferation. Interestingly, a similar increase in proliferation was observed in Slit1−/−/Slit2−/− mutant mice, suggesting that cell division is influenced by Slit-Robo signaling mechanisms. Morphometric analysis of migrating interneurons in Robo1−/−, Robo2−/− and Slit1−/−/Slit2−/−, but not in Slit1−/− mice, showed a differential increase in neuronal process length and branching suggesting that Slit-Robo signaling also plays an important role in the morphological differentiation of these neurons.  相似文献   

20.
12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o cells compared to normal bronchial epithelial cells 16HBE14o. Surprisingly, messenger RNA level of IFRD1 in CFBE41o cells was found elevated. Treating CFBE41o cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号