首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
盐碱胁迫下AM真菌对羊草生长及生理代谢的影响   总被引:1,自引:0,他引:1  
利用盆栽控制试验研究了盐碱胁迫下AM真菌对羊草生长及生理代谢的影响。结果表明,盐碱胁迫显著降低了AM真菌的侵染率与侵染强度,且具有高pH的碱胁迫的抑制效应更强。接种AM真菌一定程度上提高了胁迫下羊草幼苗的生物量及光合色素(Chl a,Chl b和Car)含量。随着盐碱胁迫浓度的增加,羊草幼苗积累了大量的Na~+,并抑制了其对K~+的吸收,接种AM真菌一定程度上降低了Na~+的积累,并缓解了胁迫下K~+含量的降低,提高NO_3~-含量从而改善羊草幼苗的离子平衡。在碱胁迫下,柠檬酸、苹果酸含量均显著提高,在盐胁迫下,仅苹果酸含量显著提高,而接种AM真菌使盐碱胁迫下有机酸含量一定程度降低。在盐碱胁迫条件下,接种AM使羊草体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性明显提高,增强宿主植物体内氧自由基的清除能力。接种AM真菌明显提高羊草幼苗抗盐碱能力,因胁迫类型不同,抗逆机理有所差异。研究结果为利用羊草进行生物改良退化盐碱草地以及菌肥的应用提供了科学依据,也为探求羊草-丛枝菌根共生体对盐碱胁迫的响应和反馈提供了数据支持。  相似文献   

2.
盐渍条件下AM真菌对大豆生长和离子含量的影响   总被引:6,自引:0,他引:6  
盐渍条件下研究了丛枝菌根(AM)真菌对大豆Glycine max植株生长和叶片离子含量的影响。结果表明,接种摩西球囊霉Glomus mosseae处理的叶片K+含量和K/Na比显著高于对照,而Na+含量无显著差异。G.mosseae显著增加了大豆植株生长量,这一效应随盐处理浓度的提高而增大。表明盐渍条件下AM真菌提高大豆抗盐性与其增加K+吸收和运输有关。  相似文献   

3.
以香椿幼苗为材料,采用水培法研究不同浓度褪黑素(0、50、100、200和400μmol/L)对盐(150 mmol/L NaCl)胁迫下香椿幼苗生长指标、矿质元素离子(Na~+、K~+、Ca~(2+)和Mg~(2+))含量、净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s)和胞间CO_2浓度(C_i)等光合作用指标的影响,以探究外源物质褪黑素对盐胁迫下香椿幼苗生长和生理的调控作用。结果表明:(1)在盐胁迫条件下,香椿幼苗的生长受到显著抑制,叶绿素含量和P_n显著降低,叶片和根系中Na~+含量比对照(CK)显著增加,而K~+、Mg~(2+)和Ca~(2+)含量以及离子含量的比值(K~+/Na~+、Mg~(2+)/Na~+和Ca~(2+)/Na~+)则明显下降,且丙二醛含量显著增加。(2)施加适宜浓度褪黑素能显著促进盐胁迫下香椿植株生长,降低其叶片和根系中Na~+含量,提高其K~+、Ca~(2+)、Mg~(2+)含量和离子含量比值以及叶片P_n、T_r、水分利用效率(WUE)和G_s和C_i,但却降低了气孔限制值(L_s)。(3)适宜浓度褪黑素使盐胁迫下香椿植株叶片的丙二醛积累明显下降,叶绿素含量显著上升。研究发现,外施适宜浓度的褪黑素能降低盐胁迫下香椿幼苗叶片和根系内Na~+浓度,增加K~+、Mg~(2+)和Ca~(2+)浓度,调控植物体内细胞的离子平衡状态,增强对营养元素的吸收,提高光合作用效率,从而提高香椿幼苗对盐胁迫的抗性,并以100μmol/L褪黑素处理的效果最佳。  相似文献   

4.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

5.
丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展   总被引:8,自引:0,他引:8  
丛枝菌根(arbuscularmycorrhizal,AM)真菌是土壤中重要的生物成员之一,对植物具有多种有益效应。AM真菌的基本功能之一是增强植物的抗逆性,在全球气候变化的今天尤其重要。本文总结了AM真菌降低温度胁迫、水分胁迫、盐胁迫、重金属胁迫、病虫害、以及杂草对植物造成的危害和提高植物抗逆性的效应;阐述了AM真菌提高植物抗逆性的作用机制;并讨论了当前该领域研究存在的难题及今后的展望。旨在为探讨提高植物抗逆性策略与途径提供参考。  相似文献   

6.
盐胁迫是限制农作物生产的主要非生物因素之一。土壤中过量的可溶性盐(主要指Na~+)可使植物受到渗透胁迫、离子胁迫和氧化胁迫等次生胁迫。在高盐环境下,植物通过Na~+外排或胞内区隔化等策略来降低胞内Na~+浓度,进而重建或维持植物体内的离子稳态平衡。主要综述了盐胁迫下植物细胞维持Na~+离子动态平衡的主要途径和调控机制的最新进展。对盐胁迫下离子动态平衡过程的深入了解将有助于创制更高耐逆性的作物品种,实现农业的可持续发展。  相似文献   

7.
黄清荣  祁琳  柏新富 《生态学报》2018,38(2):528-536
以溶液培养的棉花(Gossypium hirsutum L.)幼苗为材料,测定了不同盐胁迫程度和不同根环境供氧状况条件下棉花幼苗的叶片气体交换参数、叶绿素荧光参数和植株的Na~+、K~+离子含量等的变化,以探索根环境供氧状况对盐胁迫下棉花光合作用和离子吸收的影响。结果表明,盐胁迫和根环境供氧不足均导致净光合速率下降。在处理后的前期,盐胁迫对棉花叶片光合作用的不利影响大于供氧不足(不通气)的影响,而后期根环境供氧不足的不利影响快速增大,并逐渐超过盐胁迫的影响。在低浓度盐胁迫和根环境不通气处理的初期,棉花叶片光合速率下降的主要原因是气孔因素(气孔关闭或部分关闭引起的CO_2供应不足);随着盐胁迫程度的增大和胁迫持续时间的延长,光合速率下降的原因逐渐转变为非气孔因素(光合系统损伤引起的光合能力下降)。相同程度盐胁迫下,根环境通气处理的棉花叶片的净光合速率和PSⅡ最大光化学效率等均显著高于根环境不通气处理的,说明根环境供氧不足加重了盐胁迫对光合作用的不利影响。对棉花植株各器官离子积累量的测定、分析发现,盐胁迫导致了棉花根系拒Na~+、吸K~+的能力和选择性运输K~+的能力降低,使棉花根系和叶片的Na~+含量增多、K~+含量减少、[Na~+]/[K~+]比值升高;而根环境通气则可显著提高盐胁迫下根系的拒Na~+、吸K~+能力和根系向叶片选择性运输K~+的能力,降低根系和叶片的[Na~+]/[K~+]比值。试验还发现,根系K~+、Na~+含量受盐胁迫的影响较大,而叶片K~+、Na~+含量受根环境通气状况的影响更大一些。综合分析可见,盐胁迫和根环境供氧不足均可导致棉花叶片光合速率下降、光合机构损伤以及离子平衡失调,而根环境通气可以缓解盐胁迫对棉花叶片光合作用的不利影响、增加根系和叶片对K~+的选择吸收和积累、降低[Na~+]/[K~+]比值,从而增强棉花植株对盐胁迫的适应性和抵抗力。  相似文献   

8.
采用温室盆栽试验研究不同NaCl浓度(0、50 和85 mmol/L)持续胁迫接种摩西球囊霉和地表球囊霉 2种AM真菌对加工番茄耐盐性的影响。结果显示:(1)在0 mmol/L NaCl处理条件下,2种菌的番茄菌根化苗的根系活力、叶片中可溶性糖、可溶性蛋白、根系脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性均高于非菌根植株,且丙二醛含量低于非菌根植株,但差异不显著。(2)在50、85 mmol/L NaCl浓度胁迫下,接种2种菌根真菌可显著提高番茄植株根系活力,促进叶片中可溶性糖、可溶性蛋白及根系脯氨酸含量的积累,显著提高叶片中与抗逆相关的超氧化物歧化酶和过氧化物酶的活性,减少丙二醛在根系中的积累;随着NaCl浓度的增加,效果更为明显。(3)RT-PCR分析显示,AM真菌和盐胁迫共同调控H+转运无机焦磷酸酶H+- PPase的表达,随NaCl浓度的增加,AVP1基因表达量下降,但菌根化番茄植株的AVP1基因表达量显著高于非菌根植株。研究表明,接种AM真菌后,菌根化植株可通过显著促进幼苗体内渗透调节物质积累和抗氧化酶活性的提高,有效降低体内膜脂过氧化水平,同时过量表达AVP1基因增加了番茄植株中离子向液泡膜的转运,从而缓解盐胁迫对植株的伤害,增强番茄幼苗对盐胁迫的耐性。  相似文献   

9.
以冰叶日中花(Mesembryanthemum crystallinum L.)实生苗为材料,经NaCl、NaCl+ CaCl_2、NaCl+LaCl_3处理后,利用电感耦合等离子发射光谱仪检测叶、茎、根中Na~+、K~+、Ca~(2+)、Mg~(2+)含量,计算K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值,利用非损伤微测技术测定根尖Na~+流和K~+流,研究盐胁迫下钙在维持离子平衡中的作用。结果显示,NaCl处理后,冰叶日中花各器官中Na~+含量增加,K~+、Ca~(2+)、Mg~(2+)含量降低,离子比值降低;CaCl_2处理降低了Na~+含量,提高了K~+、Ca~(2+)、Mg~(2+)含量,离子比值升高,而LaCl_3处理后的结果相反。经NaCl处理24 h后,冰叶日中花根尖Na~+和K~+明显外流,加入CaCl_2后,Na~+外流速度显著增加,K~+外流速度受到抑制,而加入LaCl_3后则降低了Na~+的外流速度,促进了K~+的外流。研究结果表明冰叶日中花受到盐胁迫后,钙参与了促进根部Na~+外排、抑制K~+外流的过程,进而保持各器官中较低的Na~+含量,表明钙在维持和调控离子平衡中起到重要作用。  相似文献   

10.
水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响   总被引:10,自引:0,他引:10  
贺学礼  高露  赵丽莉 《生态学报》2011,31(4):1029-1037
采用盆栽试验,研究了水分胁迫下接种丛枝菌根AM真菌对民勤绢蒿(Seriphidium minchünense)生长和抗旱性的影响。结果表明,不同水分条件下,接种AM真菌提高了民勤绢蒿菌根侵染率和生物量,增加了地上部和地下部全P含量,重度胁迫下接种株地上部总黄酮含量显著升高,而对分枝数和地上部、地下部全N含量无显著影响。水分胁迫提高了民勤绢蒿菌根依赖性和全N、全P菌根贡献率。不同生长时期接种AM真菌均能提高植株叶片相对含水量、可溶性蛋白和叶绿素含量;前期接种株叶片可溶性糖含量显著低于未接种株,而中后期可溶性糖含量显著高于未接种株;整个生长时期接种株比未接种株叶片维持较低的脯氨酸含量;不同生长时期接种株叶片全N和全P含量显著升高,重度胁迫下接种株叶片总黄酮含量显著升高。AM真菌促进宿主植物生长和增强抗旱性可能是AM真菌直接促进宿主植物根系对土壤水分和矿质元素吸收和间接改善植株体内生理代谢活动的缘故。  相似文献   

11.
Soil salinity restricts plant growth and productivity. Na+ represents the major ion causing toxicity because it competes with K+ for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non‐AM plants or plants inoculated with non‐native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K+ and reduced Na+ accumulation as compared to non‐mycorrhizal plants, concomitantly with higher K+/Na+ ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K+ and Na+ homeostasis in plants colonized by native AMF.  相似文献   

12.
The current investigation was carried out to examine the role of arbuscular mycorrhizal fungi (AMF) in alleviating adverse effects of salt stress in Ephedra aphylla. The plants were exposed to 75 and 150 mM sodium chloride (NaCl) stress with and without application of AMF. Salt stress caused significant decrease in chlorophyll and carotenoid contents; however, the application of AMF restored the pigments content in salt-affected plants. Proline, phenols, and lipid peroxidation were increased with increasing concentration of NaCl, but lower accumulation has been reported in plants treated with AMF. NaCl stress also showed increase in different antioxidant enzymes activities (catalase, ascorbate peroxidase, peroxidase, glutathione reductase, and superoxide dismutase), and further increase was observed in plants treated with AMF. The nutrient uptake, Na+ and Na/K ratio increased and potassium and phosphorus were decreased with increasing concentration of NaCl in the present study. However, the colonization with AMF significantly increased K+ and P and reduced Na+ uptake. It is concluded that presown soil treatment with AMF reduced severity of salt stress in E. aphylla through alterations in physiological parameters, antioxidants and uptake of nutrients.  相似文献   

13.
Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress   总被引:1,自引:0,他引:1  
The plant growth, stem sap flow, Na+ and Cl? content, and the expression of vacuolar Na+/H+ antiporter gene (LeNHX1) in the leaves and roots of tomato under different NaCl stresses (0.5% and 1%) were studied to analyze the effect of arbuscular mycorrhizal fungi (AMF) on Na+ and Cl? accumulation and ion exchange. The results showed that arbuscular mycorrhizal (AM) plant growth and stem sap flow increased and salt tolerance improved, whereas Na+ and Cl? accumulated. Na+ significantly decreased, and no significant decline was detected in Cl? content after AMF inoculation compared with the non-AM plants. The LeNHX1 gene expression was induced in the AM and non-AM plants by NaCl stress. However, AMF did not improve the LeNHX1 level, and low expression was observed in the AM tomato. Hence, the mechanism that reduced the Na+ damage to tomato induced by AMF has little relation to LeNHX1, which can export Na+ from the cytosol to the vacuole across the tonoplast.  相似文献   

14.
Salinity is one of the major obstacles in the agriculture industry causing huge losses in productivity. Several strategies such as plant growth regulators with arbuscular mycorrhizal fungi (AMF) have been used to decrease the negative effects of salt stress. In our experiment, 28‐homobrassinolide (HBL) with spraying intervals was combined with AMF (Glomus versiforme) in cucumber cultivars Jinyou 1# (salt sensitive) and (Changchun mici, in short, CCMC, salt tolerant) under NaCl (100 mmol/L). Studies have documented that the foliar application of HBL and AMF colonization can enhance tolerance to plants under stress conditions. However, the mechanism of the HBL spraying intervals after 15 and 30 days in combination with AMF in cucumber under salt stress is still unknown. Our results revealed that the HBL spraying interval after 15 days in combination with AMF resulted in improved growth, photosynthesis, and decreased sodium toxicity under NaCl. Moreover, the antioxidant enzymes SOD (superoxide dismutase; EC 1.15.1.1) and POD activity (peroxidase; EC 1.11.1.7) showed a gradual increase after every 10 days, while the CAT (catalase; EC 1.11.1.6) increased after 30 days of salt treatments in both cultivars. This research suggests that the enhanced tolerance to salinity was mainly related to elevated levels of antioxidant enzymes and lower uptake of Na+, which lowers the risk of ion toxicity and decreases cell membrane damage.  相似文献   

15.
Lotus glaber is a glycophytic, perennial legume from Europe that occurs widely in saline habitats. We evaluated the effect of mycorrhizal fungus colonization on the response to salt stress of two genotypes of L. glaber differing in their tolerance to salinity. The experiment consisted of a randomized block design with two factors: (1) mycorrhizal fungus treatments (with or without AM fungus) and (2) two salinity levels of 0 and 200 mM NaCl. Our results indicated that Glomus intraradices established a more efficient symbiosis with the tolerant than with the sensitive genotype. G. intraradices improved growth of L. glaber plants under saline conditions. They showed higher values of net growth, shoot/root and K+/Na+ ratios, and protein concentrations than controls. Tolerant AM plants also showed higher chlorophyll levels than non-AM ones. Prevention of Na+ accumulation in the plant and enhancement of K+ concentrations in roots observed in this work could be part of the general mechanism of salt stress alleviation of L. glaber by G. intraradices.  相似文献   

16.
A pot study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Paraglomus occultum) and salt (NaCl) stress on growth, photosynthesis, root morphology and ionic balance of citrus (Citrus tangerine Hort. ex Tanaka) seedlings. Eighty-five-day-old seedlings were exposed to 100 mM NaCl for 60 days to induce salt stress. Mycorrhizal colonization of citrus seedlings was not affected by salinity when associated with P. occultum, but significantly decreased when with G. mosseae. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally had greater plant height, stem diameter, shoot, root and total plant biomass, photosynthetic rate, transpiration rate and stomatal conductance under the 0 and 100 mM NaCl stresses. Root length, root projected area and root surface area were also higher in the mycorrhizal than in the non-mycorrhizal seedlings, but higher root volume in seedlings with G. mosseae. Leaf Na+ concentrations were significantly decreased, but leaf K+ and Mg2+ concentrations and the K+/Na+ ratio were increased when seedlings with both G. mosseae and P. occultum. Under the salt stress, Na+ concentrations were increased but K+ concentrations decreased in the mycorrhizal seedlings. Under the salt stress, Ca2+ concentrations were increased in the seedlings with P. occultum or without AM fungi (AMF), but decreased with G. mosseae. Ratios of both Ca2+/Na+ and Mg2+/Na+ were also increased in seedlings with G. mosseae under the non-salinity stress, while only the Mg2+/Na+ ratio was increased in seedlings with P. occultum under the salt stress. Our results suggested that salt tolerance of citrus seedlings could be enhanced by associated AMF with better plant growth, root morphology, photosynthesis and ionic balance.  相似文献   

17.
In order to characterise the effect of ectomycorrhiza on Na+-responses of the salt-sensitive poplar hybrid Populus × canescens, growth and stress responses of Paxillus involutus (strain MAJ) were tested in liquid cultures in the presence of 20 to 500 mM NaCl, and the effects of mycorrhization on mineral nutrient accumulation and oxidative stress were characterised in mycorrhizal and non-mycorrhizal poplar seedlings exposed to 150 mM NaCl. Paxillus involutus was salt tolerant, showing biomass increases in media containing up to 500 mM NaCl after 4 weeks growth. Mycorrhizal mantle formation on poplar roots was not affected by 150 mM NaCl. Whole plant performance was positively affected by the fungus because total biomass was greater and leaves accumulated less Na+ than non-mycorrhizal plants. Energy dispersive X-ray microanalysis using transmission electron microscopy analysis of the influence of mycorrhization on the subcellular localisation of Na+ and Cl in roots showed that the hyphal mantle did not diminish salt accumulation in root cell walls, indicating that mycorrhization did not provide a physical barrier against excess salinity. In the absence of salt stress, mycorrhizal poplar roots contained higher Na+ and Cl concentrations than non-mycorrhizal poplar roots. Paxillus involutus hyphae produced H2O2 in the mantle but not in the Hartig net or in pure culture. Salt exposure resulted in H2O2 formation in cortical cells of both non-mycorrhizal and mycorrhizal poplar and stimulated peroxidase but not superoxide dismutase activities. This shows that mature ectomycorrhiza was unable to suppress salt-induced oxidative stress. Element analyses suggest that improved performance of mycorrhizal poplar under salt stress may result from diminished xylem loading of Na+ and increased supply with K+.  相似文献   

18.
Effects of arbuscular mycorrhizal fungi (AMF) and salt stress on nutrient acquisition and growth of two tomato cultivars exhibiting differences in salt tolerance were investigated. Plants were grown in a sterilized, low-P (silty clay) soil-sand mix. Salt was applied at saturation extract (ECe) values of 1.4 (control), 4.9 (medium) and 7.1 dS m–1 (high salt stress). Mycorrhizal colonization occurred irrespective of salt stress in both cultivars, but AMF colonization was higher under control than under saline soil conditions. The salt-tolerant cultivar Pello showed higher mycorrhizal colonization than the salt-sensitive cultivar Marriha. Shoot dry matter (DM) yield and leaf area were higher in mycorrhizal than nonmycorrhizal plants of both cultivars. Shoot DM and leaf area but not root DM were higher in Pello than Marriha. The enhancement in shoot DM due to AMF inoculation was 22% and 21% under control, 31% and 58% under medium, and 18% and 59% under high salinity for Pello and Marriha, respectively. For both cultivars, the contents of P, K, Zn, Cu, and Fe were higher in mycorrhizal than nonmycorrhizal plants under control and medium saline soil conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in the Pello cultivar under saline conditions. The results suggest that Marriha benefited more from AMF colonization than Pello under saline soil conditions, despite the fact that Pello roots were highly infected with the AMF. Thus, it appears that Marriha is more dependent on AMF symbiosis than Pello. Accepted: 22 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号