首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
黄河口岸线变迁对潮滩盐沼景观格局变化的影响   总被引:2,自引:0,他引:2  
基于2001、2005和2010年3期TM遥感影像,运用GIS技术,分析了黄河三角洲不同区士或(Ⅰ区,刁口段;Ⅱ区,东营港及临近岸段;Ⅲ区,河口段;Ⅳ区,南部莱州湾岸段)潮滩盐沼的景观演变与海岸线变迁的动因关系。结果表明,岸线变迁直接决定了潮滩盐沼面积的增长或缩减,但其在不同区域的影响程度差异较大。2001-2010年,Ⅰ区由于1976年以后刁口流路废弃、水沙输入量锐减导致其岸线持续蚀退,潮滩面积锐减明显(减少57.64 km~2,减少率25.94%);Ⅲ区由于1976年以后黄河由清水沟或清8汉入海,河口区域的持续淤积状态使得岸线持续增长,潮滩面积增加显著(增加66.17 km~2,增长率17.39%);而Ⅱ区由于海堤修建及港口建设等人类活动影响,岸线基本处于稳定状态,潮滩面积变化不大,Ⅳ区潮滩面积持续增加。不同区域潮滩盐沼景观格局随距海远近均呈明显带状分布,依次为芦苇盐沼、碱蓬-柽柳-芦苇盐沼、碱蓬盐沼和光滩。2001-2010年,不同景观类型之间存在明显转移,光滩、碱蓬盐沼和芦苇盐沼的面积持续减少(分别减少6.02、18.39和99.20 km~2,减少率为4.61%、12.86%和50.11%),碱蓬-柽柳-芦苇盐沼的面积整体呈增加趋势(增加35.50 km~2,增长率为24.99%)。研究发现,不同区域的景观类型均随岸线的淤积或蚀退而发生向海或向陆的演替,岸线变迁是影响不同区域潮滩盐沼景观格局的决定因素,而黄河调水调沙工程的长期实施对于近年来河口段岸线的变迁以及盐沼植被景观类型的演变具有深刻影响。  相似文献   

2.
以黄河三角洲自然保护区典型湿地群落为研究对象,探讨其物种组成及物种多样性的梯度变化规律。结果表明,从芦苇-香蒲群落到翅碱蓬群落梯度上:(1)群落物种丰富度呈波动性变化,旱柳-芦苇-白茅群落的物种丰富度最高,其次是芦苇-柽柳-翅碱蓬群落、芦苇-香蒲群落、柽柳-翅碱蓬群落,翅碱蓬群落的物种丰富最低;(2)群落的α多样性的变化格局与丰富度的变化格局不太一致,其中Shannon-Winner多样性指数与Pelou均匀度指数表现为波动性的下降趋势,而Simpson优势度指数则表现为波动性的上升趋势;(3)群落的β多样性变化格局也不完全相同,其中相异性系数呈波动性降低趋势,Copy指数则表现为先升高再降低的变化趋势。黄河三角洲典型湿地植物群落组成和物种多样性的梯度变化主要与生境变化有关。  相似文献   

3.
湿地景观破碎化的加剧严重影响了湿地生物多样性保护和湿地生态系统服务功能的维持,本研究以辽河口盐地碱蓬(Suaeda salsa)湿地为研究对象,基于GIS平台构建1985—2019年间湿地景观数据库,定量分析湿地景观破碎化特征及其驱动因素。结果表明:1985—2019年间,辽河口盐地碱蓬湿地呈退化趋势,具体表现为湿地面积萎缩,湿地景观破碎化加剧。盐地碱蓬湿地面积在1988年达到最大值4158.81 hm~2,景观聚集度较高,此后,湿地景观破碎度出现先增大后减小再增大的波动变化,2003年和2019年盐地碱蓬湿地景观破碎化最为严重,破碎度分别达到5.90和7.89;影响辽河口盐地碱蓬湿地景观破碎化主要驱动因素为人为开发活动和水文过程;景观破碎化的整体上升趋势与道路修建、农田开发、水产养殖、径流量和输沙量有较好的空间对应关系,道路修建、农田开发和水产养殖面积的增加以及年径流量的减少是导致盐地碱蓬湿地景观破碎化的主导因素。  相似文献   

4.
采用样地调查方法, 研究了黄河三角洲滨海湿地灌草群落的物种多样性及其与地下水埋深、土壤盐分之间的关系, 结果表明: 湿地灌草可划分为5 种群丛类型, 分别为(A)碱蓬+芦苇群丛, (B)柽柳-碱蓬群丛, (C)芦苇+碱蓬群丛,(D)芦苇群丛, (E)蒙古鸦葱群丛; 其中, 芦苇+碱蓬群丛具有较高的物种多样性与丰富度, 而柽柳-碱蓬群丛物种丰富度与多样性相对较低; 回归分析表明物种多样性与地下水埋深、土壤全盐量存在明显的线性关系, 随着地下水埋深的增加物种多样性为增长趋势, 反之随着土壤全盐量的增加物种多样性逐渐减少, 可用多元线性回归表明三者的关系为y=0.122+0.005X1-0.001X2。  相似文献   

5.
地形因子对盐城滨海湿地景观分布与演变的影响   总被引:3,自引:0,他引:3  
侯明行  刘红玉  张华兵  王聪  谭清梅 《生态学报》2013,33(12):3765-3773
地形作为景观结构和空间格局的重要影响因子,不仅为景观格局的形成提供基础,其空间特征也影响着景观的演变过程.基于2002、2011年地形高程信息和遥感影像,运用GIS技术,并结合分布指数,分析了盐城滨海湿地景观分布与演变对地形因子的响应特征.结果表明:①盐城淤泥质滨海湿地总体地形变化平缓,海拔0-2.5m的区域占整个研究区面积的97%以上.其中,米草带主要分布于0.9-1.5m,碱蓬带主要分布于1.5-2.lm,而芦苇带则主要分布于2.1-2.7m.②2002-2011年9年间湿地景观时间变化明显,其中,芦苇面积增加了3倍,碱蓬面积由26.80%骤降至11.51%,同期,米草面积则增加了50%之多.③湿地景观空间分布特征与地形关系比较明显.其中,米草空间分布向0.6-1.2m区间演变,显示出强烈的向低海拔区间扩张的趋势;碱蓬分布范围随地形的升高总体上呈下降趋势;芦苇在地形较高区间上的分布指数增长迅速,其优势分布区间向2.1-3.0m扩展.  相似文献   

6.
以1973—2013年16景分辨率较高的鄱阳湖湿地秋季遥感影像为基础,通过定量遥感解译技术,运用多元统计分析方法,探明鄱阳湖湿地景观分类特征、湿地植被类型空间分布格局及演替趋势;并结合遥感影像当天水位波动特征,揭示鄱阳湖水情变化与湿地景观类型和湿地植被类型分布面积之间的动态响应关系。研究表明:(1)提取的鄱阳湖湿地景观类型共有9类,即深水、中等深度水、浅水、苔草、芦苇、水生植被、稀疏草滩、泥滩、裸地;在1973—2013年,这9类湿地景观类型的总面积未发生明显变化,均维持在3000 km2左右;(2)水生植被和稀疏草滩面积均呈增长趋势,水生植被面积增长程度相比于稀疏草滩增长程度更大;苔草面积呈现明显的下降趋势,芦苇与苔草相反,呈现明显的增长趋势;(3)水位与水体之间呈极显著正相关,水位与泥滩之间呈极显著负相关;水位与植被、裸地之间不存在显著相关关系。研究结果有助于阐明鄱阳湖湿地生态水文过程变化特征及发展趋势,为维持季节性淡水湖泊湿地生态系统功能稳定提供一定的科学参考依据。  相似文献   

7.
1988-2006年辽河三角洲植被结构的变化   总被引:1,自引:0,他引:1       下载免费PDF全文
在人类干扰和气候波动的影响下,辽河三角洲的植被结构发生了显著变化.该文研究了辽河三角洲植被结构的变化,对于保护该地区生态系统、促使其健康发展具有重要意义.研究区域包括了整个辽河三角洲.资料来源主要是1988年和2006年的TM(Landsat Thematic Mapper)遥感图像.采用数字化、制作植被图和叠加分析等方法研究探讨了辽河三角洲植被结构的特点.以及植被的空间分布转移和面积变化.结果显示,以双台子河口为中心,4大植被类型(自然湿地植被、人工湿地植被、人工旱地植被和自然旱地植被)大体上构成半环状分布格局.从整体上看,从1988年至2006年,植被结构仍然保持半环状的空间格局.但是,主要植被类型的空间分布趋于集中,形成了比较大的斑块,而不是离散、破碎的.从植被类型间相互转化的情况看,几乎所有植被类型的空间分布和面积都有明显改变.在绝对面积上,水稻(Oryza saliva)田、玉米(Zea mays)地和滨海芦苇(Phragmites australis)湿地是辽河三角洲3个面积最大的植被类型.水稻田是面积增加最多的植被类型,增加977.1 km~2;而玉米地是面积减少最多的植被类型,减少622.2 km~2.在面积变化幅度上,水稻田、玉米地和滨海芦苇湿地的变化幅度分别为33.2%、-16.1%、-23.2%.面积减少幅度最大的植被类型是草地,-77.9%;面积增加幅度最大的植被类型是翅碱蓬(Suaedaheteroptera)盐化草甸,212.1%.  相似文献   

8.
盐城滨海湿地的土地利用/覆盖变化   总被引:6,自引:1,他引:5  
盐城滨海湿地是中国最重要的海岸带湿地之一,对区域生物多样性维持及我国近海水质安全意义重大,近年来由于持续的开发利用导致生境质量发生了显著变化。为在景观水平上揭示盐城滨海湿地的动态趋势,选择1975、1991、2002和2006年Landsat遥感影像数据,对盐城滨海湿地土地利用/覆盖变化及其转移过程进行了研究。结果表明:1975—2006年,自然湿地面积减少了56%(1.5×105hm2),渔塘和农田的面积则分别增加了892%(8.2×104 hm2)和165%(5.9×104 hm2);围垦及渔塘开挖等生产用地的扩张是滨海湿地土地利用/覆盖变化的主要形式,占土地利用变化总面积的75%,湿地的自然演替占11%,米草(Spartina spp.)的生物入侵占湿地整体变化面积的7%,但近年来有减缓趋势;盐城滨海湿地土地利用/覆盖变化主要存在“潮间带泥滩→碱蓬(Suaeda salsa)群落→渔塘(农田)”、“潮间带泥滩→碱蓬群落→芦苇(Phragmites communis)群落→渔塘(农田)”、“潮间带泥滩→米草→渔塘”等3类主要转移过程;自然湿地的大量减少将进一步压缩野生动物生存空间,对近海水体的净化能力也将下降,因此须加强对湿地围垦与开发利用的控制,加强对现有湿地资源的保护。  相似文献   

9.
该研究以宁夏西吉震湖滩涂湿地4种典型盐生植物群落作为研究对象,通过野外调查采样,实验室分析,结合经典统计学方法,研究柽柳(Tamarix sp.)、盐角草(Salicornia europaea)、碱蓬(Suaeda glauca)、芦苇(Phragmites australis)(矮生型)等4种盐生植物群落多样性格局,分析4种盐生植物群落及湖滩裸地土壤全盐和pH特征,为湿地自然保护区湖滨湿地的保护与恢复提供依据。结果表明:(1)在4种盐生群落斑块中共发现植物26种,藜科、禾本科、菊科分别占植物总数的23.08%、19.23%和19.23%;柽柳群落为盐生灌丛,物种数繁杂;盐角草群落、碱蓬群落和芦苇群落属于盐生草甸,物种组成单调,大多是单优群落斑块;3种盐生草甸群落中优势种的重要值显著高于盐生灌丛中柽柳的重要值(P0.05)。(2)Margalef丰富度指数、Shannon-wiener指数和Simpson优势度指数均是柽柳群落最大,分别为1.105、1.706和0.552;Pielou均匀度指数为:盐角草群落芦苇群落碱蓬群落柽柳群落,分别为1.166、1.021、0.997和0.813。(3)4种盐生群落类型及湖滩裸地土壤全盐表层(0~10cm)表聚效应显著(P0.05);表层土壤全盐依次为湖滩裸地盐角草群落碱蓬群落柽柳群落芦苇群落,土壤盐度分别在0.44%~0.58%、0.49%~0.53%、0.15%~0.54%、0.27%~0.45%和0.18%~0.39%之间;柽柳群落土壤pH随土层加深依次降低,3种盐生草甸土壤pH随土层加深先迅速增大后基本不变,湖滩裸地pH随土层加深先迅速减小后基本不变。  相似文献   

10.
采用静态箱-气相色谱法,于2016年6—11月连续观测辽河口芦苇湿地、翅碱蓬湿地和裸滩湿地的CH_4排放速率,同时测定温度、氧化还原电位(Eh)、pH值和电导率(EC)等相关环境因子的动态变化。结果表明,3种类型湿地的CH_4排放具有明显的季节变化特征,均呈先上升后下降趋势。芦苇湿地、翅碱蓬湿地(涨潮前)和裸滩湿地(涨潮前)CH_4排放通量变化范围分别为0.447—10.40、0.045—0.509 mg m~(-2) h~(-1)和0.016—0.593 mg m~(-2) h~(-1),观测期内排放通量均值相应为(3.699±3.679)、(0.165±0.156) mg m~(-2) h~(-1)和(0.198±0.191) mg m~(-2) h~(-1),不同类型湿地之间差异显著(P0.01),芦苇湿地裸滩湿地(涨潮前)翅碱蓬湿地(涨潮前)。涨潮过程中,翅碱蓬湿地和裸滩湿地的排放速率分别变化在0.009—0.353 mg m~(-2) h~(-1)和0.018—0.335 mg m~(-2) h~(-1),观测期间其排放速率均值分别为(0.119±0.132) mg m~(-2) h~(-1)和(0.131±0.103) mg m~(-2) h~(-1),明显低于涨潮前(P0.01)。不同湿地类型间CH_4排放通量与电导率(EC)呈显著负相关(P0.01)。研究结果表明,潮汐和电导率均为影响辽河口不同类型湿地中CH_4排放的关键因子。  相似文献   

11.
Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha?1 for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57–505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (< 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha?1 in open water, bare tidal flat and S. salsa marsh, respectively, compared with ‐0.51 kg N2O ha?1 for S. alterniflora marsh and ?0.25 kg N2O ha?1 for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha?1 yr?1 in the top 100 cm soil profile, a value that was 2.63‐ to 8.78‐fold higher than in native plant marshes. The estimated GWP was 1.78, ?0.60, ?4.09, and ?1.14 Mg CO2eq ha?1 yr?1 in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to ?11.30 Mg CO2eq ha?1 yr?1 in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.  相似文献   

12.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

13.
The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3 or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L−1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters.  相似文献   

14.
Salt Marsh Restoration in Connecticut: 20 Years of Science and Management   总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

15.
This paper compares the available North Americanliterature and data concerning several ecologicalfactors affecting Phragmites australisin inlandfreshwater, tidal fresh, and tidal brackish marshsystems. We compare aboveground productivity, plantspecies diversity, and sediment biogeochemistry; andwe summarize Phragmiteseffects on faunalpopulations in these habitats. These data suggest thatPhragmitesaboveground biomass is higher thanthat of other plant species occurring in the samemarsh system. Available data do not indicate anysignificant difference in the aboveground Phragmitesbiomass between marsh types, nor doesthere appear to be an effect of salinity on height.However, Phragmitesstem density wassignificantly lower in inland non-tidal freshwatermarshes than in tidal marshes, whether fresh orbrackish. Studies of the effects of Phragmiteson plant species richness suggest that Phragmitesdominated sites have lower diversity.Furthermore, Phragmiteseradication infreshwater sites increased plant diversity in allcases. Phragmitesdominated communities appearto have different patterns of nitrogen cyclingcompared to adjacent plant communities. Abovegroundstanding stocks of nitrogen (N) were found to behigher in Phragmitessites compared to thosewithout Phragmites. Porewater ammonium(NH4 +) did not differ among plant covertypes in the freshwater tidal wetlands, but inbrackish marshes NH4 +was much higher inSpartinaspp. than in neighboring Phragmitesstands. Faunal uses of Phragmitesdominated sites in North America were found to vary bytaxa and in some cases equaled or exceeded use ofother robust emergent plant communities. In light ofthese findings, we make recommendations for futureresearch.  相似文献   

16.
Tidal marshes are among the most threatened habitats on Earth because of their limited natural extent, a long history of human drainage and modification, and anticipated future sea‐level rise. Tidal marshes also provide services to humans and support species of high conservation interest. Consequently, millions of dollars have been spent on tidal marsh restoration throughout North America. Southern New England has a long history of tidal marsh restorations, often focused on removal of the invasive plant Phragmites australis. Working in 18 Connecticut marshes, we examined the bird community in 21 plots in restoration sites and 19 plots in reference sites. Restoration plots were divided into those in marshes where management involved restoring tidal flow and those where direct Phragmites control (e.g. cutting, herbicide) was used. Saltmarsh sparrows Ammodramus caudacutus, which are considered globally vulnerable to extinction, were less common where tidal flow had been restored than at reference sites and nested in only one of 14 tidal‐flow restoration plots. No abundance differences were found for large wading birds, willets Tringa semipalmata, or seaside sparrows Ammodramus maritimus. Vegetation at sites where tidal flow had been restored showed characteristics typical of lower‐elevation marsh, which is unsuitable for nesting saltmarsh sparrows. We conclude that, although tidal‐flow restorations in Connecticut control Phragmites and restore native saltmarsh vegetation, they produce conditions that are largely unsuitable for one of the highest conservation priority species found in eastern U.S. salt marshes.  相似文献   

17.
《Aquatic Botany》2007,87(2):134-140
Tidal marshes have recently been shown to be important biogenic Si recycling surfaces at the land–sea interface. The role of vegetation in this recycling process has not yet been quantified. In situ and ex situ decomposition experiments were conducted with Phragmites australis stems. In a freshwater tidal marsh, litterbags were incubated at different elevations and during both winter and summer. Biogenic Si (BSi) dissolution followed a double exponential decay model in the litterbags (from ca. 60 to 15 mg g−1 after 133 days), irrespective of season. Si was removed much faster from the incubated plant material compared to N and C, resulting in steadily decreasing Si/N and Si/C ratios. Ex situ, decomposition experiments were conducted in estuarine water, treated with a broad-spectrum antibiotic, and compared to results from untreated incubations. The bacterial influence on the dissolution of dissolved Si (DSi) from P. australis stems was negligible. Although the rate constant for dissolved Si dissolution decreased from 0.004 to 0.003 h−1, the eventual amount of BSi dissolved and saturation concentration in the incubation environment were similar in both treatments. P. australis contributes to and enhances dissolved Si recycling capacity of tidal marshes: in a reed-dominated small freshwater tidal marsh, more than 40% of DSi export was attributable to reed decomposition. As the relation between tidal marsh surface and secondary production in estuaries has been linked to marsh Si cycling capacity, this provides new insight in the ecological value of the common reed.  相似文献   

18.
The vertical flux of water, ammonium, and phosphatewas measured from two developing barrier islandmarshes; Hog Island, VA (1.3 m tidal range) andPritchards Island, SC (2.5 m tidal range). Verticalflow and nutrient concentrations from the deposit weremeasured using seepage meters placed on the surface ofthe marsh. Measured water flow was not significantlydifferent between the sites (average = 60.1 and 57.4l m-2h-1for the VA and SC marsh). Verticalflow, calculated from piezometric head gradients andhydraulic conductivity, only accounted for 15 and 4%of measured flow at the VA and SC marshes,respectively. Horizontal flow, calculated as thedifference between measured total flow and calculatedvertical flow, was larger at the SC marsh. Therefore,tidal range seems to influence the direction(horizontal vs. vertical), but not the magnitude oftotal water flow from these developing marshes.Despite a lower tidal range, phosphate flux wassignificantly higher at the VA marsh (69 mmol m-2yr-1) relative to the SC marsh (11 mmol m-2yr-1) probably because of higher porewaterphosphate concentrations. Measured ammonium flux wasnot significantly different between the sites (194 and174 mmol m-2yr-1for the VA and SC marsh).Nutrient concentration must be considered togetherwith tidal range when assessing nutrient export. Thisstudy represents one of few that quantify nutrient andwater export from naturally-developing marshes.Although young marshes are thought to export smallquantities of nutrients and other materials, rates ofnutrient export from these developing marshes weresimilar to rates measured in older marshes. Therelatively high export rates from these developingmarshes were attributed to high rates of subsurfaceflow and high nutrient input from a buried marsh ormudflat located one meter below the present marshsurface. These results have implications fordevelopment of created or restored marshes especiallywhere the goals of those activities are to maximizewetland functions such as nutrient exchange.  相似文献   

19.
Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.  相似文献   

20.
Detailed topographic and hydrologic surveys were conducted in five intertidal cove marshes in an outer coastal plain landscape to test the hypothesis that the equilibrium geologic state of intertidal habitats residing in similar landscape situations conforms to a consistent geometric form. The equation V=1571.84A1.70 (R2=96.2%) describes the relationship between hectares of marsh (A) and cubic meter volume at mean high tide (V). An empirical relationship between tide height and volume was found to obey the power series Vp=L2.38 (R2=99.6%), where Vp is volume as a percent of full pool and L is water height as a percent of mean high tide. A dimensionless index describing the relationship between area and volume is consistent for each marsh and approaches 0.10. A channel form parameter describing width to channel depth ratios is of consistent value for four of the five marshes. These provide evidence of deterministic rather than stochastic geologic development. The benefits of applying natural basin shape patterns in the design and engineering of created/restored intertidal marshes are highlighted and a generic basin is modeled (based on the geometrical section of a paraboloid retained by simple integration) as an example of the potential applicability of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号