首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了探讨荒漠草原植物养分回收特征对长期增温和氮素添加的响应以及自然降水变异对其的调控作用,该研究依托实施12年的模拟增温和氮素添加实验平台,在相对多雨的2016年(超过长期均值52%)和相对少雨的2017年(低于长期均值16%),以常见C_3植物银灰旋花(Convolvulus ammannii)和C_4植物木地肤(Kochia prostrata)为研究对象,测定分析绿叶和枯叶的氮磷含量及回收效率。结果表明:(1)在相对多雨年(2016年),增温使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别增加了14.32%、25.45%、17.97%和46.47%,氮、磷回收效率分别显著减小了9.41%和16.99%(P0.05);氮素添加使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别提高了17.32%、25.62%、20.21%和51.41%,而氮、磷回收效率显著降低了9.33%和18.89%(P0.05);增温+氮素添加共同处理显著增加了植物氮磷含量、降低了氮磷回收效率。(2)在相对少雨年(2017年),增温、氮素添加、增温+氮素添加处理对植物叶片氮磷含量、回收效率均无显著影响。(3)叶片氮磷含量在物种间差异极显著(P0.000 1),而氮磷回收效率在物种间无显著差异。(4)回归分析表明,植物叶片氮磷含量随着土壤无机氮、有效磷及含水量的增加而增加,植物氮磷回收效率则随着土壤养分和水分的可利用性的增加而降低。研究认为,荒漠草原植物养分回收对全球变化的响应受自然降水变异的调控。  相似文献   

2.
以宁夏平罗西大滩四翅滨藜人工林为研究对象,通过设置N添加的野外实验,研究四翅滨藜叶片C、N、P化学计量比的季节动态及其对N添加的响应特征。结果显示:(1)四翅滨藜叶片C、N、P化学计量比在生长季初期和末期较高,在生长季旺期(8~9月)较低。(2)N添加提高了绿叶N浓度和N∶P比,降低了绿叶C∶N、N回收度(NRP)和P回收度(PRP),对其他指标的影响无明显的规律性。(3)N回收效率(NRE)和NRP均与枯叶C∶N比显著正相关;P回收效率(PRE)与绿叶P浓度显著正相关,与枯叶P浓度显著负相关;PRP分别与绿叶P浓度和枯叶C、N、P化学计量比显著正相关,与枯叶C浓度显著负相关。研究表明,N添加促进了四翅滨藜绿叶N摄取,降低了叶片从枯叶中回收N和P的能力,改善了枯叶N分解质量;未来大气N沉降增加会改变干旱半干旱区植物N吸收、分配和回收等策略,促进枯叶中N的释放速率,直接影响N循环,进而间接影响到植被-土壤系统C和P的循环过程。  相似文献   

3.
养分重吸收是植物适应环境的重要策略。该研究以若尔盖高寒草本沼泽中的木里薹草作为研究对象,通过模拟实验,于8月、10月对绿叶和枯叶及土壤采样并测定养分含量,研究其在水位下降和自然水位下叶片养分含量、土壤养分含量和养分重吸收效率的变化规律,以及相互间的关系。使用单因素方差分析比较不同组间叶片氮(N)含量、叶片磷(P)含量、土壤速效N含量、土壤速效P含量、叶片N:P和养分重吸收效率的差异,使用一元线性回归拟合土壤速效N、P含量和养分重吸收效率之间的关系,木里薹草叶片N含量、P含量、N:P和养分重吸收效率的关系均采用Pearson相关分析。结果表明:水位下降后,木里薹草土壤速效N含量升高,速效P含量降低,进一步导致木里薹草绿叶N含量增加,P含量降低,枯叶N、P含量均降低,木里薹草叶片N、P重吸收效率升高,说明水位下降通过改变土壤速效养分含量影响木里薹草绿叶养分含量,改变植物养分获取能力(如根数、根长)影响枯叶养分含量,进而影响养分重吸收效率。  相似文献   

4.
植物营养器官在枯萎过程中将部分氮素转移到储藏组织之中,是植物适应生境的重要策略。以位于内蒙古荒漠草原的增温和添加氮素的交互试验为平台,对建群种短花针茅(Stipa breviflora)以及优势种无芒隐子草(Cleistogenes songorica)、银灰旋花(Convolvulus ammannii)、冷蒿(Artemisia frigida)和木地肤(Kochia prostrata)等5种多年生植物绿叶期和枯叶期氮浓度,以及氮素回收效率进行了研究。结果表明:增温处理下,植物绿叶期和枯叶期的平均氮素浓度提高了5.5%和11.3%,氮素回收效率显著降低了7.0%。氮素添加使绿叶期植物氮浓度显著提高了5.2%,使植物氮素回收效率降低2.9%。增温和氮素添加对植物枯叶期、绿叶期氮浓度和氮素回收效率有显著的交互作用。氮浓度和氮素回收效率对增温和氮素添加的响应在5个物种间都有显著差异,即这种响应具有物种特异性。研究表明独立的增温和氮素添加以及两者的交互作用都降低该荒漠草原生态系统中植物氮素回收效率,这些结果将为气候变化条件下荒漠生态系统氮素回收效率变化趋势的预测提供数据支持和实验证据。  相似文献   

5.
在我国南方亚热带湿地松人工林设置了3个水平的野外氮添加控制试验(0、40、120 kg N·hm-2·a-1),于2014和2015年生长季高峰期(7月底)和末期(10月底)采集湿地松成熟绿叶和落叶,分析外源氮添加对湿地松叶片碳(C)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、铝(Al)、铁(Fe)、锰(Mn)9种元素浓度及其养分回收的影响.结果表明: N添加显著增加了湿地松绿叶中N、Al、Mn浓度,降低了P和2014年的Ca浓度,而对C、K、Mg、Fe 浓度无显著影响.N添加显著提高了绿叶N/P,且该比值及绿叶养分浓度(N、P、Mn)对N添加的响应依赖于N的剂量(高N条件下响应更强).N添加显著降低了2015年N的回收效率,提高了2014年K的回收效率.相比于养分回收效率,回收能力对增加的可利用氮响应更强.N添加显著降低了N的回收能力,提高了P、K的回收能力,降低了枯叶中的Fe浓度,而对枯叶中Ca、Mg、Al、Mn浓度无显著影响.这表明,N添加对叶片化学计量的影响因不同元素而异,植物会通过调整自身的养分内循环(养分回收)来应对环境变化.N添加提高了绿叶N/P和K/P,说明氮添加条件下植物生长可能由N、P共同限制转变为P限制.氮添加增加了绿叶中Al、Mn浓度,表明N添加下湿地松面临潜在的金属离子毒性风险升高.  相似文献   

6.
养分再吸收是植物养分利用的重要策略,体现了植物对养分留存、利用和适应环境的能力。为研究亚热带不同生活型(常绿与落叶)阔叶树养分含量与养分再吸收的关系,以江西阳际峰国家级自然保护区内30种阔叶树为研究对象,测定成熟和衰老叶片氮(N)和磷(P)含量,分析常绿和落叶树种叶片N和P含量及其再吸收效率差异,揭示阔叶树种叶片养分再吸收效率对植物生活型的响应。结果表明: 落叶树种成熟叶片N和P含量显著高于常绿树种,衰老叶片P含量显著高于常绿树种,而两者衰老叶N含量差异不显著;30种阔叶林木叶片的氮再吸收效率(NRE)与磷再吸收效率(PRE)平均值分别为49.6%和50.9%,两种生活型树种间叶片的NRE与PRE无显著差异;落叶和常绿树种叶片的NRE均与衰老叶N含量呈显著负相关,PRE则与衰老叶P含量呈显著负相关,且这种关系在不同生活型之间差异不显著;总物种的PRE-NRE异速生长指数为1.18。江西阳际峰30种不同生活型阔叶树的养分再吸收效率会影响衰老叶片的养分状况,且相较于N,植物偏好从衰老叶中再吸收P。  相似文献   

7.
明确植物不同器官中的养分回收状况对探究植物养分利用策略与养分循环有重要意义。以往关于养分回收的研究多聚焦于叶片, 而对于茎秆研究较少。此外, 以往研究对植物生长盛期的叶片取样均在同一时间完成, 忽略了不同物种养分峰值可能存在时间差异, 进而导致养分回收效率被低估。该研究以呼伦贝尔草地22种多年生草本植物为研究对象, 在生长季不同时期进行茎秆和叶片取样, 测定其氮(N)、磷(P)含量, 分析茎秆和叶片两类器官中的养分在生长季内的变化情况与养分回收效率。结果表明: 1)植物N、P含量在生长季内有明显的时间变化规律, 呈现出先增加后减少的趋势; 不同物种峰值对应时间存在显著差异, 大部分物种养分峰值出现于8月下旬。2)茎秆和叶片两类器官养分回收模式存在差异, 植物叶片的N回收效率高于茎秆, 但P回收效率两者差异不明显; 叶片中N、P回收效率显著正相关, 而两者关系在茎秆中不显著。3)枯叶中养分含量是回收效率重要的影响因子, 植物养分回收效率与枯叶期养分含量呈显著负相关关系, 与生长盛期养分含量无关。4)以往研究中不同植物种在生长盛期同一时间取样, 造成茎秆和叶片N、P回收效率被不同程度地低估。该研究重新审视了养分回收研究中的取样策略, 表明依据不同物种在生长季内养分含量峰值出现时间决定生长盛期成熟组织的取样时间, 能够增加养分回收效率计测的准确性和科学性。  相似文献   

8.
不同植被被覆下温性草原土壤养分分异特征   总被引:2,自引:0,他引:2  
以青海湖区4种不同植被被覆下温性草原为对象,研究在自然及放牧因素影响下土壤异质性分布格局.结果表明:速效养分(速效氮、速效磷、速效钾)具有明显的分层特征,表层土壤含量最高,随土层加深含量逐渐降低.紫花针茅退化样地各层土壤速效养分含量普遍低于其他3个样地,恢复时间较长的样地(早熟禾样地)和有外来物质输入的样地(赖草样地)含量较高.全量养分表现不同,全氮含量表现出分层现象,退化和恢复时间短样地(紫花针茅退化样地、垂穗披碱草样地)表层(0~10 cm)和第二层(10~20 cm)全氮含量高,下层含量迅速降低;早熟禾样地和赖草样地各层全氮含量都较高;全磷含量随土层降低没有出现显著差异(P>0.05),紫花针茅退化样地0~40 cm土层全磷含量都显著低于其他样地(P<0.05),其全钾和有机质含量也普遍低于其他样地;有机质与全量养分、速效养分均呈现极显著相关(P<0.01).随土层加深土壤容重增高,退化使土壤pH值升高.退化温性草原在恢复6a后土壤基本得到恢复,人类扰动和自然因素都影响到土壤养分状况.  相似文献   

9.
养分重吸收是植物重要的营养保存机制和养分循环的重要组成部分,温度变化会影响植物养分吸收。为了探讨若尔盖高原沼泽湿地植物木里薹(Carex muliensis)草养分重吸收特征对气候变暖的响应,本研究通过野外模拟增温实验,测定木里薹草成熟叶片和衰老叶片的氮(N)、磷(P)含量并分析其重吸收效率差异。结果表明:木里薹草叶片N、P含量均值分别为11.44和1.19 mg·g-1,N重吸收效率(NRE)、P重吸收效率(PRE)均值分别为61.8%和69.0%,增温显著降低了成熟叶片氮含量,显著提高了衰老叶片磷含量(P<0.01),对成熟叶片磷含量和衰老叶片氮含量没有显著影响;增温显著降低了成熟叶片和衰老叶片N∶P(P<0.01)及NRE(P<0.05)和PRE(P<0.01);木里薹草叶片氮磷重吸收效率与成熟叶片氮磷含量呈显著正相关,与衰老叶片氮磷含量呈显著负相关;木里薹草生长受P限制,而增温可能导致限制情况发生变化,木里薹草叶片养分重吸收还可能受到化学计量调控。研究结果将有助于了解和预测若尔盖高原养分循环对未来气候变化的响应,并为气候变暖下高寒草...  相似文献   

10.
随着气候变暖, 高寒草原分布面积逐步增加, 高寒草原植物如何适应高寒干旱环境的研究还比较缺乏。该研究通过分析高寒草原优势种紫花针茅(Stipa purpurea)不同地理种群叶片解剖结构特征差异及其与气候因子的相关性, 阐明紫花针茅叶片适应高寒环境的策略, 为理解高寒植物对高寒干旱胁迫环境的适应机制提供科学依据。在青藏高原不同地理位置选择8个紫花针茅种群, 选择成熟健康叶片用卡诺氏固定液固定, 将固定好的叶片带回实验室进行石蜡切片和染色, 用显微镜观察叶片结构, 并用数码相机拍摄, 然后用软件Image-pro plus 6对叶片结构进行测量。结果显示: 紫花针茅叶片普遍具有较厚的角质层, 可减少水分散失和抵御较强的辐射; 不同地理种群紫花针茅叶片解剖结构在厚壁细胞厚度、叶片厚度、导管直径、主脉导管腔面积/主脉维管束面积和维管束面积/叶横切面积等特征上存在较大差异, 以适应不同区域的生境。Pearson相关性和聚类分析结果表明紫花针茅叶片解剖结构与气候因子密切相关; 主成分和冗余分析结果表明在干旱区域紫花针茅叶片解剖结构主要受到蒸发量的影响, 而在相对湿润区域紫花针茅叶片解剖结构主要受生长季降水量、湿润系数和年降水量/年蒸发量影响。综上所述, 紫花针茅通过增加厚壁细胞减少水分散失, 同时增加导管直径、主脉导管面积/主脉维管束面积和维管束面积/叶横切面积等输水组织面积适应高寒干旱气候。  相似文献   

11.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

12.
Aims (i) To explore variations in nutrient resorption of woody plants and their relationship with nutrient limitation and (ii) to identify the factors that control these variations in forests of eastern China.Methods We measured nitrogen (N) and phosphorus (P) concentrations in both green and senesced leaves of 172 woody species at 10 forest sites across eastern China. We compared the nutrient resorption proficiency (NuRP) and efficiency (NuRE) of N and P in plant leaves for different functional groups; we further investigated the latitudinal and altitudinal variations in NuRP and NuRE and the impacts of climate, soil and plant types on leaf nutrient resorptions.Important findings On average, the leaf N resorption proficiency (NRP) and P resorption proficiency (PRP) of woody plants in eastern China were 11.1mg g ? 1 and 0.65 mg g ? 1, respectively; and the corresponding N resorption efficiency (NRE) and P resorption efficiency (PRE) were 49.1% and 51.0%, respectively. Angiosperms have higher NRP (are less proficient) values and lower NRE and PRE values than gymnosperms, but there are no significant differences in NRP, PRP and PRE values between species with different leaf habits (evergreen vs. deciduous angiosperms). Trees have higher NRE and PRE than shrubs. Significant geographical patterns of plant nutrient resorption exist in forests of eastern China. In general, NRP and PRE decrease and PRP and NRE increase with increasing latitude/altitude for all woody species and for the different plant groups. Plant functional groups show more controls than environmental factors (climate and soil) on the N resorption traits (NRP and NRE), while site-related variables present more controls than plant types on PRP and PRE. NRP increases and PRP and NRE decrease significantly with increasing temperature and precipitation for the overall plants and for most groups, except that significant PRE–climate relationship holds for only evergreen angiosperms. Leaf nutrient resorption did not show consistent responses in relation to soil total N and P stoichiometry, probably because the resorption process is regulated by the relative costs of drawing nutrients from soil versus from senescing leaves. These results support our hypothesis that plants growing in P-limited habitats (low latitudes/altitudes or areas with high precipitation/temperature) should have lower PRP and higher PRE, compared with their counterparts in relatively N-limited places (high latitudes/altitudes or areas with low precipitation/temperature). Our findings can improve the understanding of variations in N and P resorption and their responses to global change, and thus facilitate to incorporate these nutrient resorption processes into future biogeochemical models.  相似文献   

13.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   

14.
Despite a growing knowledge of nutrient limitation for mangrove species and how mangroves adapt to low nutrients, there is scant information about the relative importance of N:P ratio and leaf phenolics variability in determining nutrient conservation. In this study, we evaluated possible nutrient conservation strategies of a mangrove Rhizophora stylosa under nutrient limitation. 1. The leaf nutrient concentrations of R. stylosa changed with season, with the highest N concentration in winter and the highest P concentration in spring for both mature and senescent leaves. Leaf N and P concentrations decreased significantly during leaf senescence. Based on N:P ratios R. stylosa forest was N-limited. Accordingly, the nitrogen resorption efficiency (NRE) was significantly higher than phosphorus resorption efficiency (PRE) for the R. stylosa leaves during leaf senescence. The NRE and PRE both reached the highest in the autumn. Average N and P concentrations in the senescent leaves were 0.15% and 0.06% for R. stylosa, respectively, indicating a complete resorption of N and an incomplete resorption of P. There was a significant negative correlation between nitrogen resorption proficiency (NRP) and NRE, meanwhile phosphorus resorption proficiency (PRP) and PRE correlation was also highly significantly. 2. R. stylosa leaves contained relatively high tannin level. Total phenolics, extractable condensed tannins and total condensed tannins contents increased during leaf senescence, and changed between seasons. The lowest concentrations of total phenolics, extractable condensed tannins and total condensed tannins occurred in summer, total phenolics concentrations were inversely related to nitrogen or phosphorus concentrations. 3. Our results confirmed that resorption efficiency during leaf senescence depends on the type of nutrient limitation, and NRE was much higher than PRE under N-limited conditions. R. stylosa forest developed several nutrient conservation strategies in the intertidal coastline surroundings, including high nitrogen resorption efficiency, low nutrient losses and high tannins level.  相似文献   

15.
Aims To explore resorption efficiency of nitrogen (NRE) and phosphorus (PRE) of woody plants in relation to soil nutrient availability, climate and evolutionary history, in North China.Methods We measured concentrations of nitrogen ([N]) and phosphorus ([P]) in both full expanded mature green and senescent leaves of the same individuals for 88 woody species from 10 sites of Mt. Dongling, Beijing, China. We built a phylogenetic tree for all these species and compared NRE and PRE among life forms (trees, shrubs and woody lianas) and between functional groups (N-fixers and non-N-fixers). We then explored patterns of NRE and PRE along gradients of mean annual temperature (MAT), soil inorganic N and available P, and phylogeny using a general linear model.Important findings Mass-based NRE (NRE m) and PRE (PRE m) averaged 57.4 and 61.4%, respectively, with no significant difference among life forms or functional groups. Neither NRE m nor PRE m exhibited significant phylogenetic signals, indicating that NRE m and PRE m were not phylogenetically conserved. NRE m was not related to [N] in green leaves; PRE m was positively correlated with [P] in green leaves; however, this relationship disappeared for different groups. NRE m decreased with [N] in senescent leaves, PRE m decreased with [P] in senescent leaves, for all species combined and for trees and shrubs. NRE m decreased with soil inorganic N for all species and for shrubs; PRE m did not exhibit a significant trend with soil available P for all species or for different plant groups. Neither NRE m nor PRE m was significantly related to MAT for overall species and for species of different groups.  相似文献   

16.
Aim   Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in plants, but the patterns of nutrient resorption at the global scale are unknown. Because soil nutrients vary along climatic gradients, we hypothesize that nutrient resorption changes with latitude, temperature and precipitation.
Location   Global.
Methods   We conducted a meta-analysis on a global data set collected from published literature on nitrogen (N) and phosphorus (P) resorption of woody plants.
Results    For all data pooled, both N resorption efficiency (NRE) and P resorption efficiency (PRE) were significantly related to latitude, mean annual temperature (MAT) and mean annual precipitation (MAP): NRE increased with latitude but decreased with MAT and MAP. In contrast, PRE decreased with latitude but increased with MAT and MAP. When functional groups (shrub versus tree, coniferous versus broadleaf and evergreen versus deciduous) were examined individually, the patterns of NRE and PRE in relation to latitude, MAT and MAP were generally similar.
Main conclusions   The relationships between N and P resorption and latitude, MAT and MAP indicate the existence of geographical patterns of plant nutrient conservation strategies in relation to temperature and precipitation at the global scale, particularly for PRE, which can be an indicator for P limitation in the tropics and selective pressure shaping the evolution of plant traits. Our results suggest that, although the magnitude of plant nutrient resorption might be regulated by local factors such as substrate, spatial patterns are also controlled by temperature or precipitation.  相似文献   

17.
Changes in precipitation can influence soil water and nutrient availability, and thus affect plant nutrient conservation strategies. Better understanding of how nutrient conservation changes with variations in water availability is crucial for predicting the potential influence of global climate change on plant nutrient-use strategy. Here, green-leaf nitrogen (N) and phosphorus (P) concentrations, N- and P-resorption proficiency (the terminal N and P concentration in senescent leaves, NRP and PRP, respectively), and N- and P-resorption efficiency (the proportional N and P withdrawn from senescent leaves prior to abscission, NRE and PRE, respectively) of Leymus chinensis (Trin.) Tzvel., a typical perennial grass species in northern China, were examined along a water supply gradient to explore how plant nutrient conservation responds to water change. Increasing water supply at low levels (< 9000 mL/year) increased NRP, PRP and PRE, but decreased green-leaf N concentration. It did not significantly affect green-leaf P concentration or NRE. By contrast, all N and P conservation indicators were not significantly influenced at high water supply levels (> 9000 mL/year). These results indicated that changes in water availability at low levels could affect leaf-level nutrient characteristics, especially for the species in semiarid ecosystems. Therefore, global changes in precipitation may pose effects on plant nutrient economy, and thus on nutrient cycling in the plant-soil systems.  相似文献   

18.
This study explored patterns of nutrient resorption in wetland macrophytes to test the prediction that plants from regions with a strong nutrient limitation will show higher resorption of the limiting nutrient. Nitrogen and phosphorus resorption was assessed in macrophytes from marshes of different nutrient status in tropical and temperate regions, and expressed as resorption efficiency (NRE, PRE) and proficiency (NRP, PRP). Macrophytes were grouped into three categories: Typha, graminoids and broadleaved plants. Nitrogen was less limiting than P, consequently N availability varied less than P availability, NRP and NRE were lower, and N resorption was mostly incomplete. NRP was determined more by growth form than by local conditions. The large range of soil P concentrations allowed an exploration of relationships between P availability and resorption along a wide gradient. P-limited macrophytes (N : P > 16) had significantly higher PRP and PRE. Resorption proficiency was found to be a more sensitive indicator of changes in nutrient availability than resorption efficiency. The results confirmed that resorption in wetland macrophytes depends on nutrient availability, and is higher at nutrient-limited sites. A particularly strong relationship was found between resorption indicators and P limitation expressed either as live tissue N : P or soil P.  相似文献   

19.
植物叶片的养分重吸收是养分贫瘠生境中植物重要的养分保存机制。研究叶片养分重吸收对土壤水分的响应,有助于了解植物对环境的适应策略。以敦煌阳关湿地优势植物芦苇为对象,研究不同水分条件[高: 33.5%±1.9%、中: 26.4%±1.3%、低: 11.3%±1.5%]下芦苇叶片氮磷重吸收模式及其对土壤水分的响应。结果表明: 1)随着土壤水分下降,土壤N浓度显著降低,芦苇成熟叶片及衰老叶片N浓度显著升高,成熟叶片和衰老叶片P浓度及土壤P浓度均无显著变化。2)高水分条件叶片N重吸收效率为 76.1%,显著高于中(65.5%)、低(62.5%)水分条件;不同水分条件叶片P重吸收效率无显著差异。3)成熟叶片和衰老叶片N浓度与叶片N重吸收效率呈极显著负相关;成熟叶片P浓度与叶片P重吸收效率无显著相关性,而衰老叶片P浓度与叶片P重吸收效率呈极显著负相关。说明土壤水分缺乏不利于叶片N重吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号