首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Many people suffer from allergic diseases and much research has illustrated that pollen can play an important role in inducing such diseases. The fact that allergic symptoms are more prevalent in larger cities may be related to the increase in air pollution resulting from the mineral or synthetic materials released into the atmosphere by cars and factories. On the other hand, recent investigations have considered that it is the exinic mineral elements which induce or control pollen allergenicity. Different degrees of Pinus elderica allergenicity in guinea pigs were studied along with the ultrastructural changes and variation in the mineral element concentration of the pollen exine after exposure of the pollen to the atmosphere of Tehran for certain periods. The results were analyzed qualitively and also statistically by the unpaired T test, whenever necessary. P values of < 0.005 were considered significant.  相似文献   

2.
Biological particles in the air such as pollen grains can cause environmental problems in the allergic population. Medical studies report that a prior knowledge of pollen season severity can be useful in the management of pollen-related diseases. The aim of this work was to forecast the severity of the Poaceae pollen season by using weather parameters prior to the pollen season. To carry out the study a historical database of 21 years of pollen and meteorological data was used. First, the years were grouped into classes by using cluster analysis. As a result of the grouping, the 21 years were divided into 3 classes according to their potential allergenic load. Pre-season meteorological variables were used, as well as a series of characteristics related to the pollen season. When considering pre-season meteorological variables, winter variables were separated from early spring variables due to the nature of the Mediterranean climate. Second, a neural network model as well as a discriminant linear analysis were built to forecast Poaceae pollen season severity, according to the three classes previously defined. The neural network yielded better results than linear models. In conclusion, neural network models could have a high applicability in the area of prevention, as the allergenic potential of a year can be determined with a high degree of reliability, based on a series of meteorological values accumulated prior to the pollen season.  相似文献   

3.
Ambrosia pollen represents a significant allergenic risk for pollen-sensitive people also in Slovakia. The aim of this study was to compare the results of the monitoring of Ambrosia pollen concentrations and pollen seasons in Bratislava during years 2002–2007. Measurements were performed by the volumetric method using Burkard volumetric spore trap at the height of 10 m above ground level. During six monitored years, a total of 11,334 Ambrosia pollen grains per cubic meter of air were recorded. The highest total ragweed pollen amount was detected in 2002 (2,577 pollen grains of the total annual pollen concentration) and the lowest ragweed pollen concentration (1,213 pollen grains) was determined in 2007. However, mentioned year was represented as the year with the longest pollen season among the all monitored years in Bratislava (41 days). The pollen season peak day of 2002, 2004, 2005 and 2006 was recorded at the beginning of September; in 2003 and 2007 the peak was at the second half of August. The highest daily amount of Ambrosia pollen grains (more than 100 grains per cubic meter of air) was in 2002 (12 days). The results can be utilized to help to prevent symptoms of allergic reactions to Ambrosia pollen and improve quality of life during seasonal allergic diseases in ragweed pollen-sensitive people.  相似文献   

4.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three Rotorod pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m–3 air for olive, 3–5 pollen m–3 air for grasses, 4–5 pollen m–3 air for Artemisia, 10–20 pollen m–3 air for pecan and 50–60 pollen m–3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

5.
The aim of this study was to determine the onset, length and end of the ragweed pollen season, taking into account diurnal, day-to-day, monthly and annual pollen variations, the effect of some meteorological parameters on atmospheric pollen concentrations and possible differences in the airborne pollen season and concentration due to sampling site. Airborne pollen was collected at three sites in central Croatia (Zagreb, Samobor and Ivanić Grad) during three pollen seasons (2002–2004). Seven-day Hirst-type volumetric pollen traps were used for pollen sampling. Ragweed pollen was the third most abundant pollen type to occur in the atmosphere of central Croatia. Total Ambrosia pollen concentration was the highest in the 2003 pollen season and the lowest in 2004 at all sampling sites. Maximum emissions were restricted to August and September. Intradiurnal periodicity showed a peak from 1000 to 1200 hours. The concentration of ragweed pollen during the pollen season was greatly influenced by temperature and precipitation: on rainy days accompanied by temperature decline, the air pollen concentration decreased abruptly. The results of this study are aimed at helping to alleviate the symptoms of allergic reactions in individuals with ragweed pollen hypersensitivity, thus improving their quality of life.  相似文献   

6.
The investigated problem was whether and to what an extent the elements of weather conditions were associated with changes in the concentration of Ambrosia pollen in air. The study was carried out in the years 1997–2004 using the volumetric method. Ragweed did not occur in the flora of the town of Rzeszów and its vicinity, but every year its pollen occurred at concentrations considerably exceeding the threshold values for the allergic response. The pollen seasons usually began from near the end of August to the first part of September. The values of daily concentrations varied greatly: days without pollen grains being frequently noted while single grains occurred long before and after the season. The effect of the elements of weather on changes in the concentration of pollen in the air was slight. Taking into account all meteorological parameters, it can be stated that an increase in the number of pollen grains is connected with increased temperature and higher wind speeds, but negatively correlated with humidity and rainfall. These relationships can usually be explained by the effects of the type of weather taking place over the wider region. The analysis of the results showed that pollen was probably transported from distant regions. The mean angle at which the greatest pollen concentrations were recorded corresponded to the SE wind direction. The analysis of synoptic phenomena during the pollen season confirms the thesis about the long-distance transport from the south, southeast and southwest. A close dependence was also found between the starting date of the season and the sum of maximum temperatures and the sum of differences between the maximum and minimum temperatures.  相似文献   

7.
This study focuses on the identification and quantification of airborne pollen grains from allergenic plant species and their relationship with meteorological factors, i.e. maximum and minimum daily temperature, relative humidity, rainfall and wind speed in the city of Islamabad, Pakistan. An aerobiological data set (2010–2012), collected using rotorod samplers in five different sectors of the city, was supplied by the Pakistan Meteorological Department. Pollen of eight allergenic species was identified amongst which Broussonetia papyrifera exceeded the highest pollen level and, therefore, likely played a key role in aggravating the symptoms of pollen allergy in the city. The mean weekly pollen counts were next correlated with the weekly number of allergic patients visiting hospitals during 2010–2011. Clinical data were acquired from the Pakistan Institute of Medical Sciences. The highest number of allergic patients visiting hospital was usually observed during weeks with high pollen level. These results suggest a close relationship between the pollen concentration in the air and the allergy symptoms. Spearman’s rank correlation analysis was performed to establish the relationships between meteorological parameters and daily average pollen counts. A pollen calendar for the Islamabad city was also prepared to provide a guide for the timing and duration of season for all encountered pollen types.  相似文献   

8.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

9.
Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch (Betula) pollen, urban air pollutants NO2, O3 and PM10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006–2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO2 and PM10) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.  相似文献   

10.
Summary Mugwort pollen flight and pollen emission are characterized by a distinct biological rhythm with emission in the early morning hours (6:00–11:00 a.m. CEST). Pollen traps at roof level monitor the daily and yearly variation of mugwort pollen flight later and in lower quantities than those installed at ground level because of the different daily variation of convection at various air levels. The daily variation of mugwort pollen flight can be described by mathematical functions. Because of these significant differences between the catch at different levels, the supposed high allergic potential of mugwort has to be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号