首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4. The JIM7 epitope was abundant and equally distributed in all cells. In storage parenchyma, the JIM5 epitope was restricted to some cell junctions and the lining of intercellular spaces while in vascular tissues it occurred at cell junctions in some phloem walls and in xylem derivatives. After secondary wall formation, the JIM5 epitope was restricted to inner cell wall regions between secondary thickenings. The 2F4 epitope was not detected without de-esterification treatment. PME treatments prior to the use of 2F4 indicated that HG at cell corners was not acetylated. The LM5 epitope was mainly present in the cambial zone and when present in storage parenchyma, it was restricted to the wall region closest to the plasma membrane. The LM6 epitope was widely distributed throughout primary walls but was more abundant in bundles than in medullar ray tissue and storage parenchyma. These data show that the occurrence of oligosaccharide motifs of pectic polysaccharides are spatially regulated in sugar beet root cell walls and that the spatial patterns vary between cell types suggesting that structural variants of pectic polymers are involved in the modulation of cell wall properties.  相似文献   

2.
Monoclonal antibodies recognizing un-esterified (JIM5) and methyl-esterified (JIM7) epitopes of pectin have been used to locate these epitopes by indirect immunofluorescence and immunogold electron microscopy in the root apex of carrot (Daucus carota L.). Both antibodies labelled the walls of cells in all tissues of the developing root apex. Immunogold labelling observed at the level of the electron microscope indicated differential location of the pectin epitopes within the cell walls. The un-esterified epitope was located to the inner surface of the primary cell walls adjacent to the plasma membrane, in the middle lamella and abundantly to the outer surface at intercellular spaces. In contrast, the epitope containing methyl-esterified pectin was located evenly throughout the cell wall. In root apices of certain other species the JIM5 and JIM7 epitopes were found to be restricted to distinct tissues of the developing roots. In the root apex of oat (Avena sativa L.), JIM5 was most abundantly reactive with cell walls at the region of intercellular spaces of the cortical cells. JIM7 was reactive with cells of the cortex and the stele. Neither epitope occurred in walls of the epidermal or root-cap cells. These pattern of expression were observed to derive from the very earliest stages of the development of these tissues in the oat root meristem and were maintained in the mature root. In the coleoptile and leaf tissues of oat seedlings, JIM5 labelled all cells abundantly whereas JIM7 was unreactive. Other members of the Gramineae and also the Chenopodiaceae are shown to express similar restricted spatial patterns of distribution of these pectin epitopes in root apices.Abbreviations CDTA 1,2-diaminocyclohexane tetraacetic acid - RG rhamnogalacturonan J.P.K. was supported by the Agricultural and Food Research Council Cell Signalling and Recognition Programme. We thank J. Cooke and N. Stacey for technical assistance, H.A. Schols, Drs. P. Albersheim and A. Darvill for pectic polysaccharides, and Dr. R.R. Selvendran and M. McCann for useful discussions.  相似文献   

3.
The distribution of several arabinogalactan protein and pectic epitopes were studied during organogenesis in androgenic callus of wheat. In cell wall of mature and degenerating parenchyma cells, the arabinogalactan epitopes JIM4, JIM14, JIM16 or LM2 were expressed differently according to the cells location. LM2 was observed also in meristematic cells of regenerated shoot buds and leaves. Anti-pectin JIM7 labelled the wall of meristematic cells but fluorescence was strongest in outer walls of surface cells of callus and shoot buds coated by extracellular matrix surface network (ECMSN). During leaves growth the ECMSN disappeared, and JIM7 fluorescence decreased. JIM5 epitope was abundant in the cell walls lining the intercellular spaces of callus parenchyma and in tricellular junctions within regenerated buds and leaves.  相似文献   

4.
Summary Aiming to elucidate the possible involvement of pectins in auxin-mediated elongation growth the distribution of pectins in cell walls of maize coleoptiles was investigated. Antibodies against defined epitopes of pectin were used: JIM 5 recognizing pectin with a low degree of esterification, JIM 7 recognizing highly esterified pectin and 2F4 recognizing a pectin epitope induced by Ca2+. JIM 5 weakly labeled the outer third of the outer epidermal wall and the center of filled cell corners in the parenchyma. A similar labeling pattern was obtained with 2F4. In contrast, JIM 7 densely labeled the whole outer epidermal wall except the innermost layer, the middle lamellae, and the inner edges of open cell corners in the parenchyma. Enzymatic de-esterification with pectin methylesterase increased the labeling by JIM 5 and 2F4 substantially. A further increase of the labeling density by JIM 5 and 2F4 and an extension of the labeling over the whole outer epidermal wall could be observed after chemical de-esterification with alkali. This indicates that both methyl- and other esters exist in maize outer epidermal walls. Thus, in the growth-controlling outer epidermal wall a clear zonation of pectin fractions was observed: the outermost layer (about one third to one half of wall thickness) contains unesterified pectin epitopes, presumably cross-linked by Ca2+ extract. Tracer experiments with3H-myo-inositol showed rapid accumulation of tracer in all extractable pectin fractions and in a fraction tightly bound to the cell wall. A stimulatory effect of IAA on tracer incorporation could not be detected in any fraction. Summarizing the data a model of the pectin distribution in the cell walls of maize coleoptiles was developed and its implications for the mechanism of auxin-induced wall loosening are discussed.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid - CWP cell-wall pellet - IAA indole-3-acetic acid - LSE low-salt extract - TCA trichloroacetic acid; Tris tris-(hydroxy-methyl)aminoethane  相似文献   

5.
The physiology of hyperhydricity in relation to oxidative stress, mineral nutrients, antioxidant enzymes and ethylene has been studied in three micropropagated carnation cultivars under experimentally induced hyperhydricity. A marked increase in Fe content in comparison with normal tissues was observed in the hyperhydric tissues from the three cultivars. The levels of ethylene, solute leakage and malondialdehyde content were also significantly higher in the hyperhydric tissues. In relation to the time course of H2O2 production measured by fluorescence quenching, a similar trend could be observed for the three cultivars, with a clear increase in the generation of hydrogen peroxide in hyperhydric tissues. The activities of all the antioxidative enzymes studied, except lipoxygenase, were higher in the hyperhydric shoots. Phenylalanine ammonia-lyase (PAL) showed a significant decrease in activity in the hyperhydric tissues in comparison with the controls for the three cultivars. Soluble guaiacol peroxidase had a strong increase in activity in hyperhydric shoots of the three cultivars. These results provide, for the first time, direct evidence of H2O2 generation in hyperhydric tissues, characterize the response of the antioxidant system to an oxidative stress during hyperhydricity in carnation leaves and point to the accumulation of toxic forms of oxygen as the inducer of some of the abnormalities observed.  相似文献   

6.
Three rat hybridoma cell lines have been isolated which produce monoclonal antibodies identifying a noduleenhanced, soluble component of Pisum sativum root nodules. These antibodies each recognized a protease-sensitive band (Mr 95K) on SDS-polyacrylamide gels. The 95K antigen was resolved by isoelectric focusing into acidic and neutral components which were separately detected by AFRC MAC 236 and MAC 265 respectively. The third antibody (MAC 204) reacted with both acidic and neutral components through an epitope that was sensitive to periodate oxidation. These monoclonal antibodies were used for immunogold localizations at light and electron microscopic levels. In each case, the antigen was shown to be present in the matrix that surrounds the invading rhizobia in infection threads and infection droplets, as well as in the intercellular spaces between plant cell walls of nodules and also of uninfected roots. By contrast, a fourth monoclonal antibody, AFRC JIM 5, labelled a pectic component in the walls of infection threads, and JIM 5 was also found to label the middle lamella of plant cell walls, especially at three-way junctions between cells. The composition and structure of the infection thread lumen is thus comparable to that of an intercellular space.  相似文献   

7.
Living xylem tissues and floral buds of several species of woody plants survive exposure to freezing temperatures by deep supercooling. A barrier to water loss and the growth of ice crystals into cells is considered necessary for deep supercooling to occur. Pectins, as a constituent of the cell wall, have been implicated in the formation of this barrier. The present study examined the distribution of pectin in xylem and floral bud tissues of peach (Prunus persica). Two monoclonal antibodies (JIM5 and JIM7) that recognize homogalacturonic sequences with varying degrees of esterification were utilized in conjunction with immunogold electron microscopy. Results indicate that highly esterified epitopes of pectin, recognized by JIM7, were the predominant types of pectin in peach and were uniformly distributed throughout the pit membrane and primary cell walls of xylem and floral bud tissues. In contrast, un-esterified epitopes of pectin, recognized by JIM5, were confined to the outer surface of the pit membrane in xylem tissues. In floral buds, these epitopes were localized in middle lamellae, along the outer margin of the cell wall lining empty intercellular spaces, and within filled intercellular spaces. JIM5 labeling was more pronounced in December samples than in July/August samples. Additionally, epitopes of an arabinogalactan protein, recognized by JIM14, were confined to the amorphous layer of the pit membrane. The role of pectins in freezing response is discussed in the context of present theory and it is suggested that pectins may influence both water movement and intrusive growth of ice crystals at freezing temperatures.  相似文献   

8.
The present study was to determine the factors that can reduce hyperhydricity in in vitro-propagated carnation genotypes. The carnation genotypes (Green Beauty, Purple Beauty, and Inca Magic) were grown in vitro under normal and hyperhydric conditions in white fluorescent light (FL) in which half of the hyperhydric plants were grown in red and blue LEDs (light emitting diodes). It was observed that hyperhydricity leads to oxidative stress in terms of TBARS (thiobarbituric acid reactive substances) content, whereas stress was alleviated by R (red) and B (blue) LEDs. The multiprotein complex proteins such as ATPase (RCI?+?LHC1) PSII-core dimer, PSII-monomer/ATPs synthase, and PSII-monomer/cyt b6f had decreased levels in hyperhydric conditions grown in white FL; however, the expression level of these photosynthetic proteins was retained in hyperhydric plants grown in R and B LEDs. Moreover, the immunoblots of two photosynthetic proteins (PsaA and PsbA) and stress-responsive proteins such as superoxide dismutase, ascorbate peroxidase, and catalase showed recovery of hyperhydricity in carnation genotypes grown in R and B LEDs. Our present study signifies that red (R) and blue light (B) LEDs reduced the hyperhydricity to control levels by maintaining the composition of thylakoid proteins and antioxidative defense mechanisms in carnation genotypes.  相似文献   

9.
A panel of monoclonal antibodies that recognize a class of cell wall proteins, related to the hydroxyproline-rich glycoproteins, has been assembled and characterized in relation to their restricted patterns of binding amongst the cells comprising the carrot root apex. The occurrence of the epitopes at the surface of cells and intercellular spaces in the region of the apex between the meristematic initials and the region of cell expansion indicates dynamic patterns that reflect aspects of the development of the anatomical pattern. The monoclonal antibody JIM11 reacts with the surface of cells in the central root cap and the region of the meristem. As the cortex/stele boundary becomes established the reactivity is seen in the inner cortical layers and finally in the whole cortex. Later in development the JIM11 epitope is also expressed by two pairs of pericycle cell files adjacent to the phloem region and also by the epidermis. The JIM12 monoclonal antibody is unreactive with cells in the region of the root cap and the meristem but is reactive with intercellular spaces formed at the junction of the oblique and radial walls in the double-layered sectors of the pericycle opposite the xylem poles. This epitope is also transiently expressed by the two phloem sieve tube element mother cells. Later in development JIM12 recognizes the future metaxylem cells. The antibody JIM20 recognizes all the cells and intercellular spaces recognized by JIM11 and JIM12. Immuno-chemical analyses indicate cross-reactivity with carrot taproot extensin and Solanaceous lectins.  相似文献   

10.
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation.  相似文献   

11.
Hyperhydricity can cause significant economic loss for the micro-propagation industry that produces blueberry. In order to predict and control the occurrence of hyperhydricity, better understanding of the anatomical and physiological features of hyperhydric plantlets is required. In this study, we investigated the ultrastructural and physiological changes associated with hyperhydric blueberry plantlets. Compared to normal plantlets, hyperhydric plantlets exhibited reduced cell wall thickness, damaged membrane and guard cell structure, decreased number of mitochondria and starch granule, higher cell vacuolation, more intercellular spaces, and collapse of vascular tissues. In addition, excessive accumulation of reactive oxygen species (ROS) and ethylene, decreased stomatal aperture and water loss, as well as abnormity of stomatal movement were also evident in the hyperhydric plantlets. The results suggested that excessive ethylene and ROS produced in response to the stress arising from in vitro culture could lead to abnormal stomatal closure, causing the accumulation of water in the tissues. This would lead to subsequent induction of oxidative stress (due to hypoxia) and cell damage, especially guard cell structure, eventually giving rise to the symptoms of hyperhydricity. Reducing the content of ethylene and ROS, and protecting the structure and function of the stomata could be considered as potential strategies for inhibiting hyperhydricity or restoring the hyperhydric plants to their normal state.  相似文献   

12.
Summary Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.  相似文献   

13.
Summary Erwinia chrysanthemi is a soft-rot pathogenic enterobacterium that provokes maceration of host plant tissues by producing extracellular cell-wall-degrading enzymes, among which are pectate lyases, pectin methyl esterases, and cellulases. Cell wall degradation in leaves and petiole tissue of infectedSaintpaulia ionantha plants has been investigated in order to define the structural and temporal framework of wall deconstruction. The degradation of major cell wall components, pectins and cellulose, was studied by both classical histochemical techniques (Calcofluor and periodic acid-thiocarbohydrazide-silver proteinate staining) and immunocytochemistry (tissue printing for detection of pectate lyases; monoclonal antibodies JIM5 and JIM7 for detection of pectic substrates). The results show that the mode of progression of the bacteria within the host plant is via the intercellular spaces of the parenchyma leaf and the petiole cortex. Maceration symptoms and secretion of pectate lyases PelA, -D, and -E can be directly correlated to the spread of the bacteria. Wall degradation is very heterogeneous. Loss of reactivity with JIM5 and JIM7 was progressive and/or clearcut. The primary and middle lamella appear to be the most susceptible regions of the wall. The innermost layer of the cell wall frequently resists complete deconstruction. At the wall intersects and around intercellular spaces resistant domains and highly degraded domains occurred simultaneously. All results lead to the hypothesis that both spatial organisation of the wall and accessibility to enzymes are very highly variable according to regions. The use of mutants lacking pectate lyases PelA, -D, -E or -B, -C confirm the important role that PelA, PelD, and PelE play in the rapid degradation of pectins from the host cell walls. In contrast, PelB and PelC seem not essential for degradation of the wall, though they can be detected in leaves infected with wild-type bacteria. With Calcofluor staining, regularly localised cellulose-rich and cellulose-poor domains were observed in pectic-deprived walls.Abbreviations MAb monoclonal antibody - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

14.
研究了蓝莓试管苗玻璃化的显微结构、超微结构以及生理生化特性的影响。与正常试管苗相比,蓝莓玻璃化苗的茎、叶显微结构发生了明显的改变:叶片表皮细胞松散、不连续;气孔结构难以辨认;叶片增厚;缺少栅栏组织,海绵组织细胞间隙变大,部分细胞解体;茎的维管组织发育不良;亚显微结构观察发现,玻璃化苗叶肉细胞体积增大,细胞壁变薄;部分细胞缺少细胞核及线粒体;叶绿体数目减少,类囊体解体,缺乏淀粉体。玻璃化试管苗的生理生化特性也发生了显著的改变:玻璃化苗组织含水量显著增加;叶绿素、可溶性糖及可溶性蛋白含量显著降低;O2- 产生速率、H2O2积累量、MDA含量及相对电导率显著升高;活性氧清除酶系中POD活性显著升高,SOD和CAT活性显著降低;PAL活性下降。蓝莓玻璃化苗的形态结构异常,水分及物质代谢紊乱,活性氧清除能力降低,表明玻璃化与氧化胁迫相关。  相似文献   

15.
Six monoclonal antibodies (mAbs) were used to map the distribution of pectic epitopes in the cell walls of potato ( Solanum tuberosum L. cvs Kardal and Karnico) tuber tissue in both light and electron microscopes. Unesterified (mAb JIM 5 epitope) and methyl-esterified (mAb JIM 7 epitope) pectins were abundant and equally distributed in all parenchymal and vascular cell walls. Homogalacturonans (HGAs) involved in Ca2+-cross-linking (mAb 2F4 epitope) were localised to the middle lamella and abundant at cell corners. The tuber cortex was densely labelled, but parenchymal cell walls in the perimedullary region contained few epitopes of calcium pectate except at corners and pit fields. In contrast, pectic side-chains were not detectable in the middle lamella of all parenchymal cell walls, except in the cortex where mAb LM6 (arabinan epitope) labelled the entire wall. The galactan epitope (mAb LM5) was localised to a zone very close to the plasmalemma in cortical cell walls and was also less abundant at pit fields and in vascular cell walls. MAb CCRC-M2 (rhamnogalacturonan I epitope) did not cross-react. Our results show that the cell walls of potato tubers are not homogeneous structures and that the pectic composition of the walls is spatially regulated.  相似文献   

16.
Summary Two monoclonal antibodies were used to reveal the nature and distribution of pectins in cell walls and in the secretion of the style inBrugmansia (Datura) suaveolens at the light and electron microscope level. The antibodies JIM 5 and JIM 7 distinguish between unesterified and methylesterified pectins. Unesterified pectins occur in the walls of both transmitting tissue and cortex. The high methylesterified pectin is limited to cell walls in the cortex. The intercellular substance contains only unesterified pectins.  相似文献   

17.

Background and Aims

Aluminium (Al) toxicity is one of the most severe limitations to crop production in acid soils. Inhibition of root elongation is the primary symptom of Al toxicity. However, the underlying basis of the process is unclear. Considering the multiple physiological and biochemical functions of pectin in plants, possible involvement of homogalacturonan (HG), one of the pectic polysaccharide domains, was examined in connection with root growth inhibition induced by Al.

Methods

An immunolabelling technique with antibodies specific to HG epitopes (JIM5, unesterified residues flanked by methylesterifed residues; JIM7, methyl-esterified residues flanked by unesterified residues) was used to visualize the distribution of different types of HG in cell walls of root apices of two maize cultivars differing in Al resistance.

Key Results

In the absence of Al, the JIM5 epitope was present around the cell wall with higher fluorescence intensity at cell corners lining the intercellular spaces, and the JIM7 epitope was present throughout the cell wall. However, treatment with 50 µm Al for 3 h produced 10 % root growth inhibition in both cultivars and caused the disappearance of fluorescence in the middle lamella of both epitopes. Prolonged Al treatment (24 h) with 50 % root growth inhibition in ‘B73’, an Al-sensitive cultivar, resulted in faint and irregular distribution of both epitopes. In ‘Nongda3138’, an Al-resistant cultivar, the distribution of HG epitopes was also restricted to the lining of intercellular spaces when a 50 % inhibition to root growth was induced by Al (100 µm Al, 9 h). Altered distribution of both epitopes was also observed when of roots were exposed to 50 µm LaCl3 for 24 h, resulting in 40 % inhibition of root growth.

Conclusions

Changes in HG distribution and root growth inhibition were highly correlated, indicating that Al-induced perturbed distribution of HG epitopes is possibly involved in Al-induced inhibition of root growth in maize.Key words: Al toxicity, cell wall, homogalacturnonan, immunofluorescence, methylesterification, pectin  相似文献   

18.
Hyperhydric disorders occur frequently in plant tissues cultured in vitro and cause several morphological and physiological abnormalities. However, a systematic defense response is triggered by hyperhydric conditions. The accumulation of reactive oxygen species (ROS), activities of antioxidant enzymes and their immunoblots, and the proteome-level changes in normal versus hyperhydric shoots of carnation (Dianthus caryophyllus) cultured in vitro were investigated. Total proteins were also extracted from the shoot and analyzed by two-dimensional electrophoresis. Among a total of 700 spots detected, only 40 had significant changes in abundance in the hyperhydric compared to the normal shoots, which were further identified by a mass spectrometer (MALDI-TOF MS). Most of them were involved in photosynthesis, RNA processing, and general metabolisms, while the rest were involved in secondary metabolic processes. These identified proteins in carnation shoots may provide novel evidences for stress tolerance against hyperhydricity.  相似文献   

19.
Summary Pectic polysaccharides are major components of the plant cell wall matrix and are known to perform many important functions for the plant. In the course of our studies on the putative role of pectic polysaccharides in the control of cell elongation, we have examined the distribution of polygalacturonans in the epidermal and cortical parenchyma cell walls of flax seedling hypocotyls. Pectic components have been detected with (1) the nickel (Ni2+) staining method to visualize polygalacturonates, (2) monoclonal antibodies specific to low (JIM5) and highly methylesterified (JIM7) pectins and (3) a combination of subtractive treatment and PATAg (periodic acid-thiocarbohydrazide-silver proteinate) staining. In parallel, calcium (Ca2+) distribution has been imaged using SIMS microscopy (secondary ion mass spectrometry) on cryo-prepared samples and TEM (transmission electron microscopy) after precipitation of calcium with potassium pyroantimonate. Our results show that, at the tissular level, polygalacturonans are mainly located in the epidermal cell walls, as revealed by the Ni2+ staining and immunofluorescence microscopy with JIM5 and JIM7 antibodies. In parallel, Ca2+ distribution points to a higher content of this cation in the epidermal walls compared to cortical parenchyma walls. At the ultrastructural level, immunogold labeling with JIM5 and JIM7 antibodies shows a differential distribution of pectic polysaccharides within cell walls of both tissues. The acidic polygalacturonans (recognized by JIM5) held through calcium bridges are mainly found in the outer part of the external wall of epidermal cells. In contrast, the labeling of methylesterified pectins with JIM7 is slightly higher in the inner part than in the outer part of the wall. In the cortical parenchyma cells, acidic pectins are restricted to the cell junctions and the wall areas in contact with the air-spaces, whereas methylesterified pectins are evenly distributed all over the wall. In addition, the pyroantimonate precipitation method reveals a clear difference in the Ca2+ distribution in the epidermal wall, suggesting that this cation is more tightly bound to acidic pectins in the outer part than in the inner part of that wall. Our findings show that the distribution of pectic polysaccharides and the nature of their linkages differ not only between tissues, but also within a single wall of a given cell in flax hypocotyls. The differential distribution of pectins and Ca2+ in the external epidermal wall suggests a specific control of the demethylation of pectins and a central role for Ca2+ in this regulation.Abbreviations Cdta diamino-1,2-cyclohexane tetra-acetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate - PGA polygalacturonic acid - PME pectin methylesterase - RG I rhamnogalacturonan I - SIMS secondary ion mass spectrometry - TEM transmission electron microscopy  相似文献   

20.
Insect galls may be study models to test the distribution of pectins and arabinogalactan-proteins (AGPs) and their related functions during plant cell cycles. These molecules are herein histochemically and immunocitochemically investigated in the kidney-shaped gall induced by Baccharopelma dracunculifoliae (Psyllidae) on leaves of Baccharis dracunculifolia DC. (Asteraceae) on developmental basis. The homogalacturonans (HGAs) (labeled by JIM5) and the arabinans (labeled by LM6) were detected either in non-galled leaves or in young galls, and indicated stiffening of epidermal cell walls, which is an important step for cell redifferentiation. The labeling of HGAs by JIM7 changed from young to senescent stage, with an increase in the rigidity of cell walls, which is important for the acquaintance of the final gall shape and for the mechanical opening of the gall. The variation on the degree of HGAs during gall development indicated differential PMEs activity during gall development. The epitopes recognized by LM2 (AGP glycan) and LM5 (1–4-β-D-galactans) had poor alterations from non-galled leaves towards gall maturation and senescence. Moreover, the dynamics of pectin and AGPs on two comparable mature kidney-shaped galls on B. dracunculifolia and on B. reticularia revealed specific peculiarities. Our results indicate that similar gall morphotypes in cogeneric host species may present distinct cell responses in the subcelular level, and also corroborate the functions proposed in literature for HGAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号