首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

3.
A full-length cDNA encoding a metallothionein (MT)-like polypeptide, designated GmarMT1, was identified in an expressed sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG34). The GmarMT1 gene is composed of two exons separated by an 81-bp intron. It codes for a 65-amino acid polypeptide comprising a plant type 1 MT-like N-terminal domain and a C-terminal domain that is most closely related to an as-yet-uncharacterized fungal MT. As revealed by heterologous complementation assays in yeast, GmarMT1 encodes a functional polypeptide capable of conferring increased tolerance against Cd and Cu. The GmarMT1 RNA is expressed in both presymbiotic spores and symbiotic mycelia, even in the absence of metal exposure, but is significantly less abundant in the latter stage. An opposite pattern was observed upon Cu exposure, which up-regulated GmarMT1 expression in symbiotic mycelia but not in germinated spores. Together, these data provide the first evidence, to our knowledge, for the occurrence in an arbuscular mycorrhizal fungus of a structurally novel MT that is modulated in a metal and life cycle stage-dependent manner and may afford protection against heavy metals (and other types of stress) to both partners of the endomycorrhizal symbiosis.  相似文献   

4.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

5.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

6.
In this paper we report the identification and characterization of a DNA region containing putative mcpA-like gene coding for a Methyl Accepting Chemotaxis Protein (MCP) and belonging to a Burkholderia endosymbiont of the arbuscular mycorrhizal fungus Gigaspora margarita. A genomic library of total DNA extracted from the fungal spores, representative of the bacterial genome, was used to investigate the prokaryotic genome. PCR experiments with primers designed on the Burkholderia mcpA-like gene and Southern blot analysis demonstrate that they actually belong to the genome of G. margarita endosymbiont. The expression of the mcpA-like gene in the fungal spores was demonstrated by RT-PCR experiments. The detailed comparative analysis of the bacterial MCPs available in databases allowed to draw a possible evolutionary pathway leading to the present-day mcpA genes. Accordingly, the ancestor of the mcpA-like genes was the result of a domain shuffling event involving two ancestral mini-genes encoding a PAS-PAC and a MA domains, respectively, followed by the elongation of the PAS-PAC moiety. The following evolutionary divergence involved not only point mutations, but also larger rearrangements (insertions and deletions) at the 3′ end of the gene.  相似文献   

7.
Intracellular bacteria have been found previously in one isolate of the arbuscular mycorrhizal (AM) fungus Gigaspora margarita BEG 34. In this study, we extended our investigation to 11 fungal isolates obtained from different geographic areas and belonging to six different species of the family Gigasporaceae. With the exception of Gigaspora rosea, isolates of all of the AM species harbored bacteria, and their DNA could be PCR amplified with universal bacterial primers. Primers specific for the endosymbiotic bacteria of BEG 34 could also amplify spore DNA from four species. These specific primers were successfully used as probes for in situ hybridization of endobacteria in G. margarita spores. Neighbor-joining analysis of the 16S ribosomal DNA sequences obtained from isolates of Scutellospora persica, Scutellospora castanea, and G. margarita revealed a single, strongly supported branch nested in the genus Burkholderia.  相似文献   

8.
Bacterial strains affiliated to the phylogenetically shallow subcluster C (PnecC) of the Polynucleobacter cluster, which is characterized by a minimal 16S rRNA gene sequence similarity of approximately 98.5%, have been reported to occur as obligate endosymbionts of ciliates (Euplotes spp.), as well as to occur as free-living cells in the pelagic zone of freshwater habitats. We investigated if these two groups of closely related bacteria represent strains fundamentally differing in lifestyle, or if they simply represent different stages of a facultative endosymbiotic lifestyle. The phylogenetic analysis of 16S rRNA gene and 16S-23S ITS sequences of five endosymbiont strains from two different Euplotes species and 40 pure culture strains demonstrated host-species-specific clustering of the endosymbiont sequences within the PnecC subcluster. The sequences of the endosymbionts showed characteristics indicating an obligate endosymbiotic lifestyle. Cultivation experiments revealed fundamental differences in physiological adaptations, and determination of the genome sizes indicated a slight size reduction in endosymbiotic strains. We conclude that the two groups of PnecC bacteria represent obligately free-living and obligately endosymbiotic strains, respectively, and do not represent different stages of the same complex life cycle. These closely related strains occupy completely separated ecological niches. To our best knowledge, this is the closest phylogenetic relationship between obligate endosymbionts and obligately free-living bacteria ever revealed.  相似文献   

9.
We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the ‘infection zone'' in the middle of each germarium and in the ‘symbiont ball'' at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to ‘Candidatus Kleidoceria schneideri'', the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6 Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host–symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation ‘Candidatus Schneideria nysicola'' is proposed for the endosymbiont clade.  相似文献   

10.
Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This "mycetocytic belt" might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relationship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are transmitted vertically. A new genus and species name, "Candidatus Rohrkolberia cinguli," is proposed for this newly characterized clade of symbiotic bacteria.  相似文献   

11.
Microscopic localization of endosymbiotic bacteria in three species of mealybug (Pseudococcus longispinus, the long-tailed mealybug; Pseudococcus calceolariae, the citrophilus mealybug; and Pseudococcus viburni, the obscure mealybug) showed these organisms were confined to bacteriocyte cells within a bacteriome centrally located within the hemocoel. Two species of bacteria were present, with the secondary endosymbiont, in all cases, living within the primary endosymbiont. DNA from the dissected bacteriomes of all three species of mealybug was extracted for analysis. Sequence data from selected 16S rRNA genes confirmed identification of the primary endosymbiont as "Candidatus Tremblaya princeps," a betaproteobacterium, and the secondary endosymbionts as gammaproteobacteria closely related to Sodalis glossinidius. A single 16S rRNA sequence of the primary endosymbiont was found in all individuals of each mealybug species. In contrast, the presence of multiple divergent strains of secondary endosymbionts in each individual mealybug suggests different evolutionary and transmission histories of the two endosymbionts. Mealybugs are known vectors of the plant pathogen Grapevine leafroll-associated virus 3. To examine the possible role of either endosymbiont in virus transmission, an extension of the model for interaction of proteins with bacterial chaperonins, i.e., GroEL protein homologs, based on mobile-loop amino acid sequences of their GroES homologs, was developed and used for analyses of viral coat protein interactions. The data from this model are consistent with a role for the primary endosymbiont in mealybug transmission of Grapevine leafroll-associated virus 3.  相似文献   

12.
A combined approach based on quantitative and nested polymerase chain reaction (qPCR and nPCR, respectively) has been set up to detect and quantify the unculturable endobacterium Candidatus Glomeribacter gigasporarum inside the spores of its fungal host Gigaspora margarita. Four genes were targeted, two of bacterial origin (23S rRNA gene and rpoB) and two from the fungus (18S rRNA gene and EF1-alpha). The sensitivity of the qPCR protocol has proved to be comparable to that of nPCR, both for the fungal and the bacterial detection. It has been demonstrated that the last detected dilution in qPCR corresponded, in each case, to 10 copies of the target sequences, suggesting that the method is equally sensitive for the detection of both fungal and bacterial targets. As the two targeted bacterial genes are predicted to be in single copy, it can be concluded that the detection limit is of 10 bacterial genomes for each mixture. The protocol was then successfully applied to amplify fungal and bacterial DNA from auxiliary cells and extraradical and intraradical mycelium. For the first time qPCR has been applied to a complex biological system to detect and quantify fungal and bacterial components using single-copy genes, and to monitor the bacterial presence throughout the fungal life cycle.  相似文献   

13.
The arbuscular mycorrhizal (AM) fungus Gigaspora margarita harbors a resident population of endosymbiontic Burkholderia in its cytoplasm. Nothing is known about the acquisition of such bacteria and about the molecular bases which allow colonization of the fungus. We wondered whether the intracellular Burkholderia strain possesses genetic determinants involved in colonization of a eukaryotic cell. Using degenerated oligonucleotide primers for vacB, a gene involved in host cell colonization by pathogenic bacteria, an 842 bp DNA fragment was cloned, sequenced, and identified as a part of the vacB gene in Burkholderia sp. The insert was used as a probe to screen a fungal library that, because of the presence of intracellular Burkholderia cells, was also representative of the bacterial genome. The complete nucleotide sequence of vacB and flanking genes was determined. The bacterial origin of this genomic region was established by PCR, using specific vacB primers on DNA from Gigasporaceae that did or did not contain cytoplasmic Burkholderia, as well as on DNA from other bacteria, including free-living Burkholderia. We hypothesize that the vacB gene is part of a new genetic region acquired by a rhizospheric Burkholderia strain, which became able to establish a symbiotic interaction with the AM fungus G. margarita.  相似文献   

14.
Spores of vesicular arbuscular mycorrhizal (VAM) fungi contain thousands of nuclei. In order to understand the karyotic structure of a VAM fungus spore, the genetic variation of the first generation of spores from a VAM fungus (Gigaspora margarita) was examined. Spores originating from both single- and multispore inoculations of the species G. margarita were analyzed by M13 minisatellite-primed PCR. In both cases, different fingerprints were obtained from individual spores with few spores exhibiting similar fingerprints. These results can be explained only by a heterokaryotic status of the nuclear population within a spore.  相似文献   

15.
摘要:【目的】分析丛枝菌根(Arbuscualr Mycorrhizal, AM)真菌珠状巨孢囊霉(Gigaspora margarita) MAFF 520054孢子伴生细菌的定殖情况,明确其生态位点,以及为进一步分析其种群生态或功能提供信息。【方法】以载体pNF8(gfp-mut1)对6株珠状巨孢囊霉MAFF 520054 孢子伴生细菌进行绿色荧光蛋白(GFP)标记,并通过荧光显微镜和平板计数的方法研究标记菌株对真菌宿主的定殖位点和不同条件下的定殖数量动态。【结果】对粘状芽孢杆菌(Peanibacillus spp.)M060106-1和M061122-6、芽孢杆菌(Bacillus sp.)M061122-10和短小芽孢杆菌(Brevibacillus sp.)M061122-12成功进行了GFP标记,其均具有较好的质粒稳定性,且与出发株的基本性状一致,适合短期内进行环境定殖研究。所有菌株均能定殖珠状巨孢囊霉MAFF 520054孢子壁,而M061122-6和M061122-12还能够定殖其菌丝;不同pH值条件下,各菌株定殖珠状巨孢囊霉MAFF 520054孢子的数量动态均为先上升后下降,pH值对各菌株的定殖数量有不同的影响;各GFP菌株对低活力的珠状巨孢囊霉孢子定殖数量高于高活力的孢子,且对高活力孢子的定殖数量动态不同。【结论】分离的珠状巨孢囊霉孢子伴生细菌能够重新定殖其孢子,菌株的定殖能力受其特性及外界因子的影响,为进一步分析AM真菌伴生细菌的种群生态及功能提供了信息。  相似文献   

16.
Acanthamoebae are ubiquitous free-living amoebae and important predators of microbial communities. They frequently contain obligate intracellular bacterial symbionts, which show a worldwide distribution. All Acanthamoeba spp. described so far harboured no or only a single specific endosymbiont phylotype, and in some cases evidence for coevolution between the symbiotic bacteria and the amoeba host has been reported. In this study we have isolated and characterized an Acanthamoeba sp. (strain OEW1) showing a stable symbiotic relationship with two morphologically different endosymbionts. 16S rRNA sequence analysis assigned these symbionts to the candidate genus Procabacter (Betaproteobacteria) and the genus Parachlamydia (Chlamydiae) respectively. Fluorescence in situ hybridization and transmission electron microscopy confirmed the affiliation of the endosymbionts and showed their co-occurrence in the amoeba host cells and their intracellular location within separate compartments enclosed by host-derived membranes. Further analysis of this stable relationship should provide novel insights into the complex interactions of intracellular multiple-partner associations.  相似文献   

17.
The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins.  相似文献   

18.
Three Gram-negative, rod-shaped bacteria that were found intracellularly in two environmental and one clinical Acanthamoeba sp. isolates were analysed. Two endocytobionts showing a parasitic behaviour were propagated successfully outside their amoebal host cells and were identified subsequently by comparative 16S rRNA sequence analysis as being most closely affiliated with Flavobacterium succinicans (99% 16S rRNA sequence similarity) or Flavobacterium johnsoniae (98% 16S rRNA sequence similarity). One endocytobiont could neither be cultivated outside its original Acanthamoeba host ( Acanthamoeba sp. TUMSJ-321) nor transferred into other amoebae. Electron microscopy revealed that the amoebal trophozoites and cysts were almost completely filled with cells of this endosymbiont which are surrounded by a host-derived membrane. According to 16S rRNA sequence analysis, this endosymbiont could also be assigned to the Cytophaga – Flavobacterium – Bacteroides (CFB) phylum, but was not closely affiliated to any recognized species within this phylogenetic group (less than 82% 16S rRNA sequence similarity). Identity and intracellular localization of this endosymbiont were confirmed by application of a specific fluorescently labelled 16S rRNA-targeted probe. Based on these findings, we propose classification of this obligate Acanthamoeba endosymbiont as ' Candidatus Amoebophilus asiaticus'. Comparative 18S rRNA sequence analysis of the host of ' Candidatus Amoebophilus asiaticus' revealed its membership with Acanthamoeba 18S rDNA sequence type T4 that comprises the majority of all Acanthamoeba isolates.  相似文献   

19.
以大豆毛状根为宿主,接种VA菌根真菌珠状巨孢囊霉(Gigaspora margarita),经过3.5个月的双重培养,观察到VA菌根真菌珠状巨孢囊霉对大豆毛状根的侵染,辅助细胞形成,并获得VA菌根真菌成熟孢子,在无菌条件下建立了大豆毛状根-VA菌根真菌双重培养体系,为研究菌根真菌侵染大豆根部形成共生体系及相关分子机制提供了一种有效的研究方法。  相似文献   

20.
The discovery of new hydrothermal vent systems in the back-arc basins of the Western Pacific revealed chemosynthesis-based faunal communities distinct from those of other vents. These vents are dominated by two related gastropods (Alviniconcha spp. and Ifremeria nautilei) that harbour symbiotic bacteria in their gills. We used comparative 16S ribosomal RNA (rRNA) gene sequencing and in situ hybridization with rRNA-targeted probes to characterize the bacterial symbionts of Alviniconcha sp. and I. nautilei from the Manus Basin in the Western Pacific. The analyses revealed that these two gastropod species, although affiliated with the same family, harbour phylogenetically distant chemosymbionts, suggesting independent origins of these endosymbioses. The I. nautilei endosymbiont clusters with sulfur-oxidizing bacteria within the gamma-Proteobacteria, as is the case for all previously characterized endosymbionts from a wide diversity of host taxa harbouring thioautotrophic prokaryotes. In contrast, the Alviniconcha endosymbiont is affiliated with sulfur-oxidizing bacteria within the epsilon-Proteobacteria. These results show that bacteria from the epsilon-Proteobacteria are also capable of forming endosymbiotic associations with marine invertebrates from chemosynthetic environments. More generally, the endosymbiotic lifestyle is now shown to be distributed throughout all recognized classes of the Proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号