首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.  相似文献   

2.
Thermosensitive TRP channels display unique thermal responses, suggesting distinct roles mediating sensory transmission of temperature. However, whether relative expression of these channels in dorsal root ganglia (DRG) is altered in nerve injury is unknown. We developed a multiplex ribonuclease protection assay (RPA) to quantify rat TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8 RNA levels in DRG. We used the multiplex RPA to measure thermosensitive TRP channel RNA levels in DRG from RTX-treated rats (300 microg/kg) or rats with unilateral sciatic nerve chronic constriction injury (CCI). TRPV1 and TRPA1 RNA were significantly decreased in DRG from RTX-treated rats, indicating functional colocalization of TRPA1 and TRPV1 in sensory nociceptors. In DRG from CCI rats, TRPA1, TRPV2, and TRPM8 RNA showed slight but significant increases ipsilateral to peripheral nerve injury. Our findings support the hypothesis that increased TRP channel expression in sensory neurons may contribute to mechanical and cold hypersensitivity.  相似文献   

3.
Chuang HH  Neuhausser WM  Julius D 《Neuron》2004,43(6):859-869
TRPM8, a member of the transient receptor potential family of ion channels, depolarizes somatosensory neurons in response to cold. TRPM8 is also activated by the cooling agents menthol and icilin. When exposed to menthol or cold, TRPM8 behaves like many ligand-gated channels, exhibiting rapid activation followed by moderate Ca(2+)-dependent adaptation. In contrast, icilin activates TRPM8 with extremely variable latency followed by extensive desensitization, provided that calcium is present. Here, we show that, to achieve full efficacy, icilin requires simultaneous elevation of cytosolic Ca2+, either via permeation through TRPM8 channels or by release from intracellular stores. Thus, two stimuli must be paired to elicit full channel activation, illustrating the potential for coincidence detection by TRP channels. Determinants of icilin sensitivity map to a region of TRPM8 that corresponds to the capsaicin binding site on the noxious heat receptor TRPV1, suggesting a conserved molecular logic for gating of these thermosensitive channels by chemical agonists.  相似文献   

4.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

5.
《Cell calcium》2014,55(4):208-218
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca2+ concentration ([Ca2+]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca2+, the hypotonic test solution evoked Ca2+ influx. The [Ca2+]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca2+]i only in the presence of extracellular Ca2+. The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.  相似文献   

6.
Attenuated cold sensitivity in TRPM8 null mice   总被引:17,自引:0,他引:17  
Thermosensation is an essential sensory function that is subserved by a variety of transducer molecules, including those from the Transient Receptor Potential (TRP) ion channel superfamily. One of its members, TRPM8 (CMR1), a ligand-gated, nonselective cation channel, is activated by both cold and chemical stimuli in vitro. However, its roles in cold thermosensation and pain in vivo have not been fully elucidated. Here, we show that sensory neurons derived from TRPM8 null mice lack detectable levels of TRPM8 mRNA and protein and that the number of these neurons responding to cold (18 degrees C) and menthol (100 microM) is greatly decreased. Furthermore, compared with WT mice, TRPM8 null mice display deficiencies in certain behaviors, including icilin-induced jumping and cold sensation, as well as a significant reduction in injury-induced responsiveness to acetone cooling. These results suggest that TRPM8 may play an important role in certain types of cold-induced pain in humans.  相似文献   

7.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral''s actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral''s stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral''s actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral''s broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

8.
One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8β. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.  相似文献   

9.
Tsuruda PR  Julius D  Minor DL 《Neuron》2006,51(2):201-212
Transient receptor potential (TRP) channels mediate numerous sensory transduction processes and are thought to function as tetramers. TRP channel physiology is well studied; however, comparatively little is understood regarding TRP channel assembly. Here, we identify an autonomously folded assembly domain from the cold- and menthol-gated channel TRPM8. We show that the TRPM8 cytoplasmic C-terminal domain contains a coiled coil that is necessary for channel assembly and sufficient for tetramer formation. Cell biological experiments indicate that coiled-coil formation is required for proper channel maturation and trafficking and that the coiled-coil domain alone can act as a dominant-negative inhibitor of functional channel expression. Our data define an authentic TRP modular assembly domain, establish a clear role for coiled coils in ion channel assembly, demonstrate that coiled-coil assembly domains are a general feature of TRPM channels, and delineate a new tool that should be of general use in dissecting TRPM channel function.  相似文献   

10.
TRPM8 is required for cold sensation in mice   总被引:12,自引:0,他引:12  
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temperature gradient and two-temperature choice assays, TRPM8-deficient mice exhibit strikingly reduced avoidance of cold temperatures. TRPM8-deficient mice also lack behavioral response to cold-inducing icilin application and display an attenuated response to acetone, an unpleasant cold stimulus. However, TRPM8-deficient mice have normal nociceptive-like responses to subzero centigrade temperatures, suggesting the presence of at least one additional noxious cold receptor. Finally, we show that TRPM8 mediates the analgesic effect of moderate cooling after administration of formalin, a painful stimulus. Therefore, depending on context, TRPM8 contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号