首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Casein kinase 2 (CK2) regulates multiple cellular processes and can promote oncogenesis. Interactions with the CK2β regulatory subunit of the enzyme target its catalytic subunit (CK2α or CK2α′) to specific substrates; however, little is known about the mechanisms by which these interactions occur. We previously showed that by binding CK2β, the Epstein-Barr virus (EBV) EBNA1 protein recruits CK2 to promyelocytic leukemia (PML) nuclear bodies, where increased CK2-mediated phosphorylation of PML proteins triggers their degradation. Here we have identified a KSSR motif near the dimerization interface of CK2β as forming part of a protein interaction pocket that mediates interaction with EBNA1. We show that the EBNA1-CK2β interaction is primed by phosphorylation of EBNA1 on S393 (within a polyserine region). This phosphoserine is critical for EBNA1-induced PML degradation but does not affect EBNA1 functions in EBV replication or segregation. Using comparative proteomics of wild-type (WT) and KSSR mutant CK2β, we identified an uncharacterized cellular protein, C18orf25/ARKL1, that also binds CK2β through the KSSR motif and show that this involves a polyserine sequence resembling the CK2β binding sequence in EBNA1. Therefore, we have identified a new mechanism of CK2 interaction used by viral and cellular proteins.  相似文献   

3.
In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.  相似文献   

4.
The marriage between transducers of cell stress stimuli and their nuclear targets is likely to be achieved in part by some spatial-temporal compartmentalization of the relevant effectors. A candidate compartment for these events is the promyelocytic leukemia nuclear domain (PML-ND), within which are found numerous effectors of damage recognition, repair, and cell death. We predicted that the identification of PML-ND cargo proteins would clarify those biochemical pathways that straddle the recognition of cellular damage and cell fate. We now use mass spectrometry of peptides eluted from PML coprecipitates to demonstrate that the gamma 1 (gamma1) isoform of PLC associates with nuclear PML. Though thought to act primarily in the cytoplasm, we use biochemical fractionation combined with immunocytochemistry to verify the nuclear expression of PLC-gamma1 and its interaction with PML. These are the first data to show an interaction between endogenous levels of a phosphoinositide metabolizing protein and the biophysically labile PML-ND by mass spectrometry and add weight to the view that PML-NDs may act as tumor suppressors by sequestering mitogenic effectors.  相似文献   

5.
In acute promyelocytic leukemia (APL), hematopoietic differentiation is blocked and immature blasts accumulate in the bone marrow and blood. APL is associated with chromosomal aberrations, including t(15;17) and t(11;17). For these two translocations, the retinoic acid receptor alpha (RARα) is fused to the promyelocytic leukemia (PML) gene or the promyelocytic zinc finger (PLZF) gene, respectively. Both fusion proteins lead to the formation of a high-molecular-weight complex. High-molecular-weight complexes are caused by the “coiled-coil” domain of PML or the BTB/POZ domain of PLZF. PML/RARα without the “coiled-coil” fails to block differentiation and mediates an all-trans retinoic acid-response. Similarly, mutations in the BTB/POZ domain disrupt the high-molecular-weight complex, abolishing the leukemic potential of PLZF/RARα. Specific interfering polypeptides were used to target the oligomerization domain of PML/RARα or PLZF/RARα. PML/RARα and PLZF/RARα were analyzed for the ability to form high-molecular-weight complexes, the protein stability and the potential to induce a leukemic phenotype in the presence of the interfering peptides. Expression of these interfering peptides resulted in a reduced replating efficiency and overcame the differentiation block induced by PML/RARα and PLZF/RARα in murine hematopoietic stem cells. This expression also destabilized the PLZF/RARα-induced high-molecular-weight complex formation and caused the degradation of the fusion protein. Targeting fusion proteins through interfering peptides is a promising approach to further elucidate the biology of leukemia.  相似文献   

6.
7.
8.
The cell nucleus harbors a variety of different bodies that vary in number, composition, and size. Although these bodies coordinate important nuclear processes, little is known about how they are formed. Among the most intensively studied bodies in recent years is the PML body. These bodies have been implicated in gene regulation and other cellular processes and are disrupted in cells from patients suffering from acute promyelocytic leukemia. Using live cell imaging microscopy and immunofluorescence, we show in several cell types that PML bodies are formed at telomeric DNA during interphase. Recent studies revealed that both SUMO modification sites and SUMO interaction motifs in the promyelocytic leukemia (PML) protein are required for PML body formation. We show that SMC5, a component of the SUMO ligase MMS21-containing SMC5/6 complex, localizes temporarily at telomeric DNA during PML body formation, suggesting a possible role for SUMO in the formation of PML bodies at telomeric DNA. Our data identify a novel role of telomeric DNA during PML body formation.  相似文献   

9.
10.
11.
The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.  相似文献   

12.
Immediate early gene X1 (IEX-1) represents a stress response gene involved in growth control and modulation of apoptosis. Here, we report a detailed analysis of IEX-1 with respect to its intracellular localization. By means of confocal laser scanning microscopy, a green fluorescent protein-IEX-1 fusion protein transfected into HeLa cells, as well as endogenous IEX-1, could be detected in distinct subnuclear structures. This particular subnuclear localization of IEX-1 was not observed with a green fluorescent protein-IEX-1 fusion protein lacking a putative nuclear localization sequence, along with a decreased effect on apoptosis. Double immunofluorescence staining revealed a partial co-localization of endogenous promyelocytic leukemia protein (PML) and IEX-1 in these subnuclear structures. Nuclear localization of IEX-1 is also enhanced upon treatment of cells with leptomycin B, an inhibitor of the nuclear exporter CRM1. These observations indicate that IEX-1 is specifically shuttled to and from the nucleus. Overexpression experiments using PML isoforms III and IV revealed distinct intranuclear interaction of IEX-1 and PML. Coprecipitation experiments showed physical interaction between IEX-1 and PML. The close structural relation of IEX-1-containing nuclear subdomains and PML nuclear bodies suggests a function of IEX-1 related to the multiple functions of these unique subnuclear regions, particularly during stress response and growth control.  相似文献   

13.
The gene encoding promyelocytic leukemia protein (PML) generates several spliced isoforms. Ectopic expression of PML1 promotes the proliferation of ERα-positive MCF-7 breast cancer (BC) cells, while a loss of PML by knockdown or overexpression of PML4 does the opposite. PML is an essential constituent of highly dynamic particles called PML nuclear bodies (NBs). PML NBs are heterogenous multiprotein subnuclear structures that are part of cellular stress sensing machinery. The antioxidant sulforaphane (SFN) inhibits the proliferation of BC cells and causes a redistribution of the subcellular localization of PML, a disruption of disulfide-bond linkages in nuclear PML-containing complexes, and a reduction in the number and size of PML NBs. Mechanistically, SFN modifies several cysteine residues, including C204, located in the RBCC domain of PML. PML is sumoylated and contains a Sumo-interacting motif, and a significant fraction of Sumo1 and Sumo2/3 co-localizes with PML NBs. Ectopic expression of the mutant C204A selectively inhibits the biogenesis of endogenous PML NBs but not PML-less Sumo1-, Sumo2/3, or Daxx-containing nuclear speckles. Importantly, PML1 (C204A) functions as a dominant-negative mutant over endogenous PML protein and promotes anti-proliferation activity. Together, we conclude that SFN elicits its cytotoxic activity in part by inactivating PML1's pro-tumorigenic activity.  相似文献   

14.
The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs.  相似文献   

15.
16.
The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1β production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus.  相似文献   

17.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.  相似文献   

18.
The promyelocytic leukemia protein (PML) is a mammalian regulator of cell growth which is characteristically disrupted in acute promyelocytic leukemia and by a variety of viruses. PML contains a RING domain which is required for its growth-suppressive and antiviral properties. Although normally nuclear, in certain pathogenic conditions, including arenaviral infection, PML is relocated to the cytoplasm, where its functions are poorly understood. Here, we observe that PML and arenavirus protein Z use regions around the first zinc-binding site of their respective RING domains to directly interact, with sub-micromolar affinity, with the dorsal surface of translation initiation factor eIF4E, representing a novel mode of eIF4E recognition. PML and Z profoundly reduce the affinity of eIF4E for its substrate, the 5' 7-methyl guanosine cap of mRNA, by over 100-fold. Association with the dorsal surface of eIF4E and direct antagonism of mRNA cap binding by PML and Z lead to direct inhibition of translation. These activities of the RING domains of PML and Z do not involve ubiquitin-mediated protein degradation, in contrast to many RINGs which have been observed to do so. Although PML and Z have well characterized physiological functions in regulation of growth and apoptosis, this work establishes the first discrete biochemical mechanism which underlies the biological activities of their RING domains. Thus, we establish PML and Z as translational repressors, with potential contributions to the pathogenesis of acute promyelocytic leukemia and variety of viral infections.  相似文献   

19.
Nuclear dots containing PML and Sp100 proteins (NDs) play a role in the development of acute promyelocytic leukemia, are modified after infection with various viruses, and are autoimmunogenic in patients with primary biliary cirrhosis (PBC). PML and Sp100 gene expression is strongly enhanced by interferons (IFN). Based on immunostaining with a monoclonal antibody (mAb C8A2), a third protein, nuclear dot protein 52 (NDP52), was recently localized in NDs. Here we analyzed the cellular localization, expression, and structure of NDP52 in more detail. Our NDP52-specific sera revealed mainly cytoplasmic staining but no ND pattern, neither in untreated nor in IFN-treated cells. Cells transfected with NDP52 expression vectors showed exclusively cytoplasmic staining. In subcellular fractionation experiments, NDP52 was found in cytoplasmic and nuclear fractions. Unlike as described for Sp100 and PML, NDP52 mRNA and protein levels were only marginally enhanced by IFN γ and not enhanced at all by IFN β. NDP52 homodimerization but no heterodimerization with Sp100 or PML could be demonstrated. None of the 93 PBC sera tested contained autoantibodies against NDP52. Finally, mAb C8A2 reacted not only with NDP52 but also with a conformation-dependent epitope on the Sp100 protein. These data imply that NDP52 forms homodimers but no heterodimers with Sp100 and PML, lacks autoantigenicity in PBC, localizes mainly in the cytoplasm, and is associated with the nucleus, but not with NDs. Finally, unlike Sp100 and PML, NDP52 expression is neither markedly enhanced nor localization detectably altered by type I and II IFNs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号