共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测。选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较。对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法。其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法。 相似文献
5.
研究表明,许多神经退行性疾病都与蛋白质在高尔基体中的定位有关,因此,正确识别亚高尔基体蛋白质对相关疾病药物的研制有一定帮助,本文建立了两类亚高尔基体蛋白质数据集,提取了氨基酸组分信息、联合三联体信息、平均化学位移、基因本体注释信息等特征信息,利用支持向量机算法进行预测,基于5-折交叉检验下总体预测成功率为87.43%。 相似文献
6.
蛋白质结构类预测是生物信息和蛋白质科学中重要的研究领域.基于Chou提出的伪氨基酸离散模型框架,从蛋白质序列出发,设计一种新的伪氨基酸组成方法表示蛋白质序列样本.抽取氨基酸组合(10-D)在序列中出现的频率和疏水氨基酸模式(6-D)表示蛋白质序列的附加特征,用和传统的氨基酸组成(20-D)一起构成的36维的伪氨基酸组成向量来表示蛋白质序列的特征.使用遗传算法来优化附加特征的权重系数.伪氨基酸组成向量作为输入数据,模糊支持向量机作为预测工具.使用三个常用的标准数据集来验证算法的性能.Jack-knife检验结果说明本方法具有较高的准确率,有望成为潜在的预测蛋白质功能的工具. 相似文献
7.
基于模糊支持向量机的膜蛋白折叠类型预测 总被引:1,自引:0,他引:1
现有的基于支持向量机(support vector machine,SVM)来预测膜蛋白折叠类型的方法.利用的蛋白质序列特征并不充分.并且在处理多类蛋白质分类问题时存在不可分区域,针对这两类问题.提取蛋白质序列的氨基酸和二肽组成特征,并计算加权的多阶氨基酸残基指数相关系数特征,将3类特征融和作为分类器的输入特征矢量.并采用模糊SVM(fuzzy SVM,FSVM)算法解决对传统SVM不可分数据的分类.在无冗余的数据集上测试结果显示.改进的特征提取方法在相同分类算法下预测性能优于已有的特征提取方法:FSVM在相同特征提取方法下性能优于传统的SVM.二者相结合的分类策略在独立性数据集测试下的预测精度达到96.6%.优于现有的多种预测方法.能够作为预测膜蛋白和其它蛋白质折叠类型的有效工具. 相似文献
8.
9.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。 相似文献
10.
利用支持向量机和马氏判别式预测人类polⅡ启动子 总被引:1,自引:0,他引:1
通过选取人类启动子与非启动子序列中不同的k-mer作为预测算法的基础特征,分别以三个区域(-249~-1;0~+50;-30~+30)的6-mer频数作为离散源参数构建离散增量,同时选取24个位点(-31~-21;-4-+2;+25-+29)的3-mer频数作为位置打分函数的参数,分别利用支持向量机和马氏判别式为判别函数对启动子进行预测。用10折叠交叉检验来衡量两种算法的预测能力,预测结果成功率分别达到87.0%和87.9%。对于独立检验集,敏感性分别为62.7%和76.0%,特异性分别为77.5%和66.8%。 相似文献
11.
Shao-Ping Shi Jian-Ding Qiu Xing-Yu SunJian-Hua Huang Shu-Yun HuangSheng-Bao Suo Ru-Ping LiangLi Zhang 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(3):424-430
It is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx). 相似文献
12.
Being the largest family of cell surface receptors, G-protein-coupled receptors (GPCRs) are among the most frequent targets. The functions of many GPCRs are unknown, and it is both time-consuming and expensive to determine their ligands and signaling pathways by experimental methods. It is of great practical significance to develop an automated and reliable method for classification of GPCRs. In this study, a novel method based on the concept of Chou’s pseudo amino acid composition has been developed for predicting and recognizing GPCRs. The discrete wavelet transform was used to extract feature vectors from the hydrophobicity scales of amino acid to construct pseudo amino acid (PseAA) composition for training support vector machine. The prediction accuracies by the current method among the major families of GPCRs, subfamilies of class A, and types of amine receptors were 99.72%, 97.64%, and 99.20%, respectively, showing 9.4% to 18.0% improvement over other existing methods and indicating that the proposed method is a useful automated tool in identifying GPCRs. 相似文献
13.
G-protein-coupled receptors (GPCRs) constitute a remarkable protein family of receptors that are involved in a broad range of biological processes. A large number of clinically used drugs elicit their biological effect via a GPCR. Thus, developing a reliable computational method for predicting the functional roles of GPCRs would be very useful in the pharmaceutical industry. Nowadays, researchers are more interested in functional roles of GPCRs at the finest subtype level. However, with the accumulation of many new protein sequences, none of the existing methods can completely classify these GPCRs to their finest subtype level. In this paper, a pioneer work was performed trying to resolve this problem by using a hierarchical classification method. The first level determines whether a query protein is a GPCR or a non-GPCR. If it is considered as a GPCR, it will be finally classified to its finest subtype level. GPCRs are characterized by 170 sequence-derived features encapsulating both amino acid composition and physicochemical features of proteins, and support vector machines are used as the classification engine. To test the performance of the present method, a non-redundant dataset was built which are organized at seven levels and covers more functional classes of GPCRs than existing datasets. The number of protein sequences in each level is 5956, 2978, 8079, 8680, 6477, 1580 and 214, respectively. By 5-fold cross-validation test, the overall accuracy of 99.56%, 93.96%, 82.81%, 85.93%, 94.1%, 95.38% and 92.06% were observed at each level. When compared with some previous methods, the present method achieved a consistently higher overall accuracy. The results demonstrate the power and effectiveness of the proposed method to accomplish the classification of GPCRs to the finest subtype level. 相似文献
14.
15.
16.
Because a priori knowledge of a protein structural class can provide useful information about its overall structure, the determination of protein structural class is a quite meaningful topic in protein science. However, with the rapid increase in newly found protein sequences entering into databanks, it is both time-consuming and expensive to do so based solely on experimental techniques. Therefore, it is vitally important to develop a computational method for predicting the protein structural class quickly and accurately. To deal with the challenge, this article presents a dual-layer support vector machine (SVM) fusion network that is featured by using a different pseudo-amino acid composition (PseAA). The PseAA here contains much information that is related to the sequence order of a protein and the distribution of the hydrophobic amino acids along its chain. As a showcase, the rigorous jackknife cross-validation test was performed on the two benchmark data sets constructed by Zhou. A significant enhancement in success rates was observed, indicating that the current approach may serve as a powerful complementary tool to other existing methods in this area. 相似文献
17.
Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%. This result suggests that composition alone is sufficient to accurately recognize disorder. Interestingly, SVMs using reduced sets of amino acids based on chemical similarity preserve high recognition accuracy. A set as small as four retains an accuracy of 84+/-2%; this suggests that general physicochemical properties rather than specific amino acids are important factors contributing to protein disorder. 相似文献
18.
Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition 总被引:3,自引:0,他引:3
Apoptosis proteins are very important for understanding the mechanism of programmed cell death. The apoptosis protein localization can provide valuable information about its molecular function. The prediction of localization of an apoptosis protein is a challenging task. In our previous work we proposed an increment of diversity (ID) method using protein sequence information for this prediction task. In this work, based on the concept of Chou's pseudo-amino acid composition [Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Genet. (Erratum: Chou, K.C., 2001, vol. 44, 60) 43, 246-255, Chou, K.C., 2005. Using amphiphilic pseudo-amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19], a different pseudo-amino acid composition by using the hydropathy distribution information is introduced. A novel ID_SVM algorithm combined ID with support vector machine (SVM) is proposed. This method is applied to three data sets (317 apoptosis proteins, 225 apoptosis proteins and 98 apoptosis proteins). The higher predictive success rates than the previous algorithms are obtained by the jackknife tests. 相似文献
19.
Qing-Bin Gao 《Analytical biochemistry》2010,398(1):52-59
Integral membrane proteins are central to many cellular processes and constitute approximately 50% of potential targets for novel drugs. However, the number of outer membrane proteins (OMPs) present in the public structure database is very limited due to the difficulties in determining structure with experimental methods. Therefore, discriminating OMPs from non-OMPs with computational methods is of medical importance as well as genome sequencing necessity. In this study, some sequence-derived structural and physicochemical features of proteins were incorporated with amino acid composition to discriminate OMPs from non-OMPs using support vector machines. The discrimination performance of the proposed method is evaluated on a benchmark dataset of 208 OMPs, 673 globular proteins, and 206 α-helical membrane proteins. A high overall accuracy of 97.8% was observed in the 5-fold cross-validation test. In addition, the current method distinguished OMPs from globular proteins and α-helical membrane proteins with overall accuracies of 98.2 and 96.4%, respectively. The prediction performance is superior to the state-of-the-art methods in the literature. It is anticipated that the current method might be a powerful tool for the discrimination of OMPs. 相似文献