首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
实验研究了D96N型基因突变细菌视紫红质薄膜的光存储性能,实现了用670 nm激光在BR膜上记录光学图像,用560 nm弱光读出图像,用488 nm激光擦除图像的写读擦操作.M态寿命在室温下延长到了3 min,比溶液状态下的野生细菌视紫红质M态寿命延长了5个数量级.  相似文献   

2.
报道了在高碱性pH下,紫膜中细菌视紫红质(BR)表面结构变化的直观信息.紫外可见光谱实验发现,当pH上升到12.6,BR分子上的生色团视黄醛脱落,分子完全变性;原子力显微镜实验观测到在此pH下,紫膜片层的晶格结构瓦解,BR分子在紫膜上无规则聚集,同时出现非特征“岛屿”结构和特征“岛屿”结构.  相似文献   

3.
四株盐杆菌中类紫质分子的探测   总被引:3,自引:0,他引:3  
研究了四株盐杆菌Halobacterium sp. xiz 515.H.sp.dal s_2-1和H.sp.ausH_3a光驱动的质子泵功能及相应视黄醛蛋白的光化学反应.用pH电极测定了细胞悬浮液和胞外被膜(cellenvelope)介质中的光致△pH变化.实验发现,xiz.515和dals_2-1在照光时介质酸化.而另两株则相反,介质碱化.在这些盐杆菌中,进行了细胞膜各组份离心分离,其操作过程如同在Hhalobium上R中分离紫膜一样.最后得到的相应于紫膜组份的细胞膜中,没有发现表微菌紫质(BR)分子存在的吸收峰值.但是,在动力学光谱仪上却都发现此组份内具有与BR分子类似的光循环反应.本文假定,在这些盐杆菌中存在有微量的BR或类BR分子,它们以单体形式分散的小的聚集体散落在部份细胞膜上.  相似文献   

4.
BR—D96N光学薄膜的全息记录特性   总被引:2,自引:0,他引:2  
BR D96N是具有显著光致变色特性的细菌视紫红质 (BR)经过基因定点突变的产物 ,与野生BR相比 ,它的M态寿命延长到了 5min ,因而表现出明显的饱和吸收特性和较低的饱和吸收光强 (0 .4mW /cm2 )。BR D96N用于全息记录时形成的是动态光栅 ,其特征量为光强而非曝光能量。实验表明 ,当再现光较弱时 ,衍射效率最大的记录光强基本对应于样品的饱和吸收光强。当记录光强一定时 ,再现光对所记录光栅具有擦除作用 ,再现光较弱时具有较高衍射效率 (1.8% ) ,但并不能得到高衍射光强 ,若要得到高衍射光强 ,存在着最佳再现光强 (80 μW /cm2 )。实验证明了在BR D96N薄膜上可以实现全息图像记录。  相似文献   

5.
紫膜蛋白菌紫质(bacteriorhodopsin,BR)处于不同的膜脂环境中,通过吸收光谱、荧光光谱和闪光动力学光谱的测定,比较了3种不同膜脂环境对菌紫质分子结构和功能的影响。实验结果表明:天然膜脂是BR最稳定的膜脂环境,可以形成以三聚体为单位的二维六角形品格结构。二豆蔻酰脂酰胆碱(dimyristoyl phosphatidylcholine,DMPC)也是BR分子的稳定脂环境,但以单体形式存在于膜脂环境中,功能受到一定影响。经TritonX-100增溶处理的紫膜膜脂环境中BR为单体,不稳定,容易发生结构和功能的变化。  相似文献   

6.
细菌视紫红质的两种光电微分响应及其机制   总被引:3,自引:1,他引:2  
利用MATLAB软件对细菌视紫红质 (BR)膜光电器件的脉冲响应实验数据进行拟合 ,得到器件的冲激响应函数。据此用SIMULINK模块构造出了反映BR光电器件特性的仿真系统。利用此系统对不同间断光入射BR光电器件时的输出响应信号进行了仿真计算。通过分析得出结论 :以前所描述的微分响应 (发生在毫秒到秒的时间量级 ,在光打开时产生一个正脉冲 ,在光关掉时产生一个负脉冲 )并非BR分子固有的特性 ,部分是由于测量电路引起的。BR分子本身特性引起的微分响应是发生在微秒时间量级 ,而且在光打开时产生一个负脉冲 ,在光关掉时产生一个正脉冲。对这两种微分响应产生的机制分别进行了探讨  相似文献   

7.
在长方形光脉冲光照下,菌紫质(bacteriorhodopsin,BR)干膜组装成夹层光电池具有微分光电流响应.在氧化铟锡(ITO)导电玻璃/BR膜/封口膜/不锈钢形成的干膜电池下可观察到整流特性,而在不锈钢/BR膜/封口膜/ITO导电玻璃形成的干膜电池下则观察不到整流特性,这说明是电极介导的整流.平衡电压测定表明:工作电极/BR膜表面与对电极/BR膜表面有不同的性质,电极的界面效应控制了BR的取向.酸与碱产生的瞬间电流极性也证实了电极整流行为的存在.这些结果将有助于了解BR膜的微分光电响应.  相似文献   

8.
提出一种新的灰度图像分层表述算法.该算法的核心是基于一系列具有高度规律性的灰度函数gn(x,y)来逼近不规则的原图像灰度函数f(x,y).本算法具有快速收敛性,是一个良好的逼近器.由于gn具有高度规律性,致使用较少的存储空间就可实现对它的存储.这一算法为生物图像的数据处理和重构提供一条新的途径.  相似文献   

9.
细菌视紫红质对调制光的响应特性   总被引:1,自引:1,他引:0  
细菌视紫红质在结构上与视紫红质的相似性使其具有某些视觉响应特性.用电泳法在不锈钢电极上沉积出定向紫膜薄膜,构成不锈钢/紫膜/凝胶/铜电极结构的光接收器.在调制光作用下,光接收器显示出对光强变化的微分响应特性.测量了光电压随调制频率和入射光功率的变化关系.比较和讨论了细菌视紫红质对调制光响应特性与视觉频闪及明暗感的相关性.  相似文献   

10.
具有双嗜性(嗜水和嗜油)的有机分子可以在水面展成悬浮的单分子层。用一块经适当处理的固体衬底连续地插入和取出水面,可以将这种单分子层顺序转移到衬底表面,形成分子规则排列的单层膜和多层膜,这就是朗缪尔——布洛奇特薄膜(简称LB薄膜)。LB薄膜致密、均匀、膜厚精确可控在数埃水平。同时,作为一种分子层可控的准晶态薄膜.它有可能实现人们梦寐以求的控制分子排列的愿望。长期以来,人们靠化学  相似文献   

11.
12.
Summary This paper describes the application of image analysis combined with a quantitative staining method for the analysis of cervical specimens. The image analysis is carried out with the Leyden Television Analysis System, LEYTAS, of which two versions are described. LEYTAS-1 as well as LEYTAS-2 have both been designed with a high degree of flexibility and interaction facilities. A much wider range of image analysis programs is however, possible with LEYTAS-2, enabling many applications. LEYTAS-1, the earlier version, consists of a Leitz microscope with automated functions, a TV camera, the Texture Analysis System (TAS, Leitz), a four-bit grey value memory and a minicomputer (PDP 11/23). Using this instrumentation 1,500 cervical smears prepared from cell suspensions and stained with acriflavin-Feulgen-Sits have been analysed in a completely automated procedure. Image transformations working in parallel on entire fields, have been used for cell selection and artefact rejection. Resulting alarms, consisting of selected single cells and non-rejected artefacts are stored in the grey value memory, which is displayed on a TV monitor. This option allows visual interaction after the machine diagnosis has been made. The machine diagnosis was correct in 320 out 321 specimens with a severe dysplasia or more serious lesion. The false positive rate in 561 morphologically negative specimens (normal and inflammation) was 16% (machine diagnosis). Visual interaction by subtracting the visually recognized false alarms from the total number of alarms reduces the false positive rate to 11%. In LEYTAS-2, which is based on LEYTAS-1 studies, the microscope is equipped with a new type of objective, enabling the analysis of microscope fields, which are four times as large as in LEYTAS-1. The image analysis part consists of the Modular Image Analysis Computer (MIAC, Leitz) and for alarm storage an eight-bit grey value processor is used. Comparison with LEYTAS-1 shows that cell selection capacities are similar and that the speed is four times higher.In honour of Prof. P. van Duijn  相似文献   

13.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

14.
Bacteriorhodopsin (BR) is an integral membrane protein found in "purple membrane" (the Archaea cell membrane) mainly in Halobacteria. This protein absorbs green light (wavelength 500-650 nm, with the absorption maximum at 568 nm) and converts it into an electrochemical gradient. This gradient in turn is used for ATP production. The ability of BR to convert light energy into chemical energy or sunlight into electricity has been used in different applications mainly optical appliances but also for therapeutic/medical applications and research. This review surveys some of these applications that have been patented in the last five years.  相似文献   

15.
This paper describes the application of image analysis combined with a quantitative staining method for the analysis of cervical specimens. The image analysis is carried out with the Leyden Television Analysis System, LEYTAS, of which two versions are described. LEYTAS-1 as well as LEYTAS-2 have both been designed with a high degree of flexibility and interaction facilities. A much wider range of image analysis programs is however, possible with LEYTAS-2, enabling many applications. LEYTAS-1, the earlier version, consists of a Leitz microscope with automated functions, a TV camera, the Texture Analysis System (TAS, Leitz), a four-bit grey value memory and a minicomputer (PDP 11/23). Using this instrumentation 1,500 cervical smears prepared from cell suspensions and stained with acriflavin-Feulgen-Sits have been analysed in a completely automated procedure. Image transformations working in parallel on entire fields, have been used for cell selection and artefact rejection. Resulting alarms, consisting of selected single cells and non-rejected artefacts are stored in the grey value memory, which is displayed on a TV monitor. This option allows visual interaction after the machine diagnosis has been made. The machine diagnosis was correct in 320 out 321 specimens with a severe dysplasia or more serious lesion. The false positive rate in 561 morphologically negative specimens (normal and inflammation) was 16% (machine diagnosis). Visual interaction by subtracting the visually recognized false alarms from the total number of alarms reduces the false positive rate to 11%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The distribution of patterns of activity in different brain structures has been related to the encoding and processing of sensory information. Consequently, it is important to be able to image the distribution of these patterns to understand basic brain functions. The spatial resolution of voltage-sensitive dye (VSD) methods has recently been enhanced considerably by the use of video imaging techniques. The main factor that now hampers the resolution of VSD patterns is the inherent limitation of the optical systems. Unfortunately, the intrinsic characteristics of VSD images impose important limitations that restrict the use of general deconvolution techniques. To overcomes this problem, in this study an image restoration procedure has been implemented that takes into consideration the limiting characteristics of VSD signals. This technique is based on applying a set of imaging processing steps. First, the signal-to-noise (S/N) ratio of the images was improved to avoid an increase in the noise levels during the deconvolution procedures. For this purpose, a new filter technique was implemented that yielded better results than other methods currently used in optical imaging. Second, focal plane images were deconvolved using a modification of the well-known nearest-neighbor deconvolution algorithm. But to reduce the light exposure of the preparation and simplify image acquisition procedures, adjacent image planes were modeled according to the in-focus image planes and the empirical point spread function (PSF) profiles. Third, resulting focal plane responses were processed to reduce the contribution of optical responses that originate in distant image planes. This method was found to be satisfactory under simulated and real experimental conditions. By comparing the restored and unprocessed images, it was clearly demonstrated that this method can effectively remove the out-of-focus artifacts and produce focal plane images of better quality. Evaluations of the tissue optical properties allowed assessment of the maximum practical optical section thickness using this deconvolution technique in the optical system tested. Determination of the three-dimensional PSF permitted the correct application of deconvolution algorithms and the removal of the contaminating light arising from adjacent as well as distant optical planes. The implementation of this deconvolution approach in salamander olfactory bulb allowed the detailed study of the laminar distribution of voltage-sensitive changes across the bulb layer. It is concluded that (1) this deconvolution procedure is well suited to deconvolved low-contrast images and offers important advantages over other alternatives; (2) this method can be properly used only when the tissue optical properties are first determined; (3) high levels of light scattering in the tissue reduce the optical section capabilities of this technique as well as other deconvolution procedures; and (4) use of the highest numerical aperture in the objectives is advisable because this improves not only the light-collecting efficiency to detect poor-contrast images, but also the spatial frequency differences between adjacent image planes. Under this condition it is possible to overcome some of the limitations imposed by the light scattering/birefringence of the tissue.  相似文献   

17.
Bacteriorhodopsin (BR) is an evolutionary highly optimized photochromic retinal protein, which is found in extremely halophilic bacteria, e.g., in salt marshes. We demonstrated that starting from the wildtype as a blueprint by means of gene technology and biotechnology a versatile material for optical information recording can be developed. BR is structurally related to the visual pigment rhodopsin. It is the key molecule in the halobacterial photosynthetic system — an alternative to the chlorophyll-dependent photosynthesis. Its biological function ist that of a light-driven proton pump. In the halobacterial cell — which are found e.g. in salt marshes — it converts light energy into chemical energy, i.e. a proton gradient over the cell membrane, which finally supplies ATP to the cell. The photochromic properties of BR are very attractive compared to those of known organic photochromic compounds, in particular as far as longevity under exposure to oxygen and light is concerned. This is one of the reasons why we try to utilized this evolutionary optimized biomaterial for technical applications in particular in optical data storage and processing. As the biological function of BR is optimized for energy conversion, the physical properties of BR need to be tuned to turn this molecule into a material which matches the requirements of optical applications in data storage and processing. Gene technology is a powerful tool for the controlled modification of physical properties of a biomolecule like BR. In technical applications water needs to be omitted. However, the function of biomaterials strictly depends on the presence of water. Membrane proteins are much less dependent on the presence of water which makes them good candidates for technical applications. We showed that BR can be processed into dry polymeric films where its function is preserved. In a field test where ID-cards comprising BR-based inks as security elements it has been demonstrated that biomaterials may be integrated in active form as functional components into conventional technical applications. Conventional nanomaterials supply properties to a product, biomaterials supply functions.  相似文献   

18.
Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号