首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
【目的】烟粉虱 Bemisia tabaci 是番茄黄曲叶病毒(Tomato yellow leaf curl virus, TYLCV)在自然界的唯一传播媒介,除了可以直接取食获取TYLCV,烟粉虱还可以通过交配获取此植物病毒。虽然前人研究证明了烟粉虱Middle East-Asia Minor 1 (MEAM1)和Mediterranean (MED)隐种都可以通过交配在两性个体之间水平传播TYLCV,但有关MEAM1与MED隐种水平传播TYLCV的能力是否存在差异,不同研究的结果却并不一致。另外,目前尚无关于烟粉虱的水平传播行为是否有助于TYLCV在田间扩散的相关研究。【方法】从浙江、广东、云南和河南4个省份的田间采集MEAM1和MED隐种烟粉虱种群,在室内应用分子标记对各种群所属隐种鉴定后分别建立7个供试种群,然后观察每个种群内带毒成虫与不带毒成虫通过交配在不同性别个体之间水平传播TYLCV的能力,并选用采自广东的MEAM1隐种烟粉虱模拟群体交配实验探究通过交配获毒的烟粉虱个体是否具有传播TYLCV致健康番茄植株发病的能力。【结果】4个省内的MEAM1和MED隐种烟粉虱都可通过交配对TYLCV进行水平传播,但传播频率一般在10%以下。不同省份的MEAM1隐种种群之间在水平传播TYLCV的能力上无显著差异,不同省份的MED隐种种群之间也不存在显著差异。另外,同一省份的MEAM1隐种与MED隐种之间在水平传播TYLCV的能力上也不存在显著差异,而且在两个隐种中,带毒雄虫将病毒水平传播给不带毒雌虫与带毒雌虫将病毒水平传播给不带毒雄虫的频率没有显著差异。研究还表明,采自广东的MEAM1隐种烟粉虱个体通过交配水平获毒后不能致健康番茄植株发病。【结论】综合以上结果,我们推测TYLCV在中国境内两个入侵烟粉虱隐种MEAM1和MED各自种群内个体之间的水平传播概率较低,对该病毒在田间的扩散可能没有作用或作用不大。  相似文献   

2.
仇志恒  夏伟  吴小平 《菌物研究》2013,11(3):190-195
通过对平菇孢子dsRNA检测、单双杂交和单单杂交,从垂直传播和水平传播2个方面来研究平菇病毒dsRNA的传播途径,结果表明:病毒dsRNA通过孢子垂直传播的几率很小,通过细胞融合的水平传播几率相对比较高,在实际生产中平菇病毒dsRNA的主要传播途径还有待进一步的研究。  相似文献   

3.
蜂王体内的精子贮存   总被引:1,自引:0,他引:1  
蜜蜂最重要的生殖特征是一雌多雄交配,蜂王交配后将精子贮存于受精囊中长达数年之久,并仍能保持活力。这些特征使蜜蜂成为研究精子长期贮存的模式动物。文章介绍蜂王的交配和精子贮存过程,精子贮存器官,贮存过程中的精子竞争和隐秘雌性选择,以及蜂王精子的长期贮存机制,并对将来的研究方向进行了展望。  相似文献   

4.
Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock‐on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re‐emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV‐B overtaking DWV‐A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock‐on effects.  相似文献   

5.
According to current thinking, a parasite's transmission mode will be a major determinant of virulence, defined as the harm induced by parasites to their hosts. With horizontal transmission, virulence will increase as a byproduct of a trade-off between fitness gained through increased among-host transmission (infectivity) and fitness lost through increased virulence. With vertical transmission, virulence will decrease because a parasite's reproductive potential will be maximized only by decreasing harm to the host, allowing parasite transmission to more host offspring. To test both predictions, we transmitted barley stripe mosaic virus (BSMV) horizontally and then vertically in its host, barley (Hordeum vulgare). After four generations of horizontal transmission, we observed a nearly twofold increase in horizontal infectivity and nearly tripled virulence. After three generations of subsequent vertical transmission, we observed a modest (16%) increase in vertical transmissibility and a large (40%) reduction in virulence. Increased horizontal transmission is often due to increased pathogen replication which, in turn, causes increased virulence. However, we found no correlation between within-host virus concentration and virulence, indicating that the observed changes in virulence were not due to changes in viral titer. Finally, horizontally transmitted BSMV had reduced vertical transmission and vertically transmitted BSMV had reduced horizontal infectivity. These two observations suggest that, in nature, in different host populations with varying opportunities for horizontal and vertical transmission, different viral strains may be favored.  相似文献   

6.
The transplacental transmission of Aleutian mink disease parvovirus (ADV) was studied in experimental infection of 1-year-old female non-Aleutian mink. The ADV-seronegative female mink were inoculated with ADV prior to mating or after the expected implantation of the embryos during pregnancy. A group of uninfected females served as a control group. Animals from each group were killed prior to or shortly after parturition. The in situ hybridization technique with radiolabeled strand-specific RNA probes was used to determine target cells of virus infection and virus replication. In both infected groups, ADV crossed the endotheliochorial placental barrier, although animals infected before mating already had high antibody titers against ADV at the time of implantation. The percentage of dead and resorbed fetuses was much higher in dams infected before mating. In the placentae of these mink, virus DNA and viral mRNA were detected in cells in the mesenchymal stroma of the placental labyrinth and hematoma but only occasionally in the cytotrophoblast of the placental hematoma. Placentae of animals infected during pregnancy showed in addition very high levels of virus and also viral replication in a large number of cytotrophoblast cells in the placental hematoma, which exhibited distinct inclusion bodies. In both groups, neither virus nor virus replication could be detected in maternal endothelial cells or fetal syncytiotrophoblast of the placental labyrinth. Fetuses were positive for virus and viral replication at high levels in a wide range of tissues. Possible routes of transplacental transmission of ADV and the role of trophoblast cells as targets for viral replication are discussed.  相似文献   

7.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

8.
We tested the impact of colony density and climatic conditions on the level of queen polyandry in different wild populations of the honeybee (Apis mellifera jemenitica). We identified the mating frequency of queens by genotyping worker offspring (n = 672) of 28 wild colonies with microsatellite DNA markers. The populations sampled in different climatic regions in Sudan showed a high variance for the queen mating frequency ranging from 9 to 23 estimated matings with an average of 14.00 ± 3.94 (13.16 ± 4.87 effective matings). The degree of polyandry was highly significantly correlated with the rainfall in the various regions. In general, more rainfall resulted in lower mating frequencies. Polyandry did not correlate with colony density or with genetic diversity of the local sample populations. This suggests that variation in polyandry in wild honeybee populations of Sudan is primarily driven by climatic differences among ecosystem variation rather than by the absolute or effective local honeybee population size.  相似文献   

9.
The transmission dynamics of viruses in a replicating cell population is investigated, assuming that viral mutants differ in their efficiencies of horizontal and vertical transmission. As a genetic result we find that competition between such different viral strategies need not select for increasing basic reproductive rates. We illustrate evolutionary trajectories that lead to increased viral latency even at the expense of lower basic reproductive rates and lower equilibrium abundance. In some cases oscillations in the prevalence of different mutants are obtained.  相似文献   

10.
Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite''s close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号