首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background  

Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW).  相似文献   

2.
Breeding new interspecific banana hybrid varieties relies on the use of Musa acuminata and M. balbisiana parents. Unfortunately, infectious alleles of endogenous Banana streak virus (eBSV) sequences are present in the genome of Musa balbisiana genitors. Upon activation by biotic and abiotic stresses, these infectious eBSVs lead to spontaneous infections by several species of Banana streak virus in interspecific hybrids harboring both Musa acuminata and M. balbisiana genomes. Here we provide evidence that seedy M. balbisiana diploids display diverse eBSV allelic combinations and that some eBSVs differ structurally from those previously reported. We also show that segregation of infectious and non-infectious eBSV alleles can be achieved in seedy M. balbisiana diploids through self-pollination or chromosome doubling of haploid lines. We report on the successful breeding of M. balbisiana diploid genitors devoid of all infectious eBSV alleles following self-pollination and on the potential of breeding additional M. balbisiana diploid genitors free of infectious eBSVs by crossing parents displaying complementary eBSV patterns. Our work paves the way to the safe use of M. balbisiana genitors for breeding banana interspecific hybrid varieties with no risk of activation of infectious eBSVs.  相似文献   

3.
The objective of this study was to construct a molecular phylogeny of the genus Musa using restriction-site polymorphisms of the chloroplast (cpDNA) and mitochondrial DNA (mtDNA). Six cpDNA and two mtDNA sequences were amplified individually in polymerase chain reaction (PCR) experiments in 13 species representing the four sections of Musa. Ensete ventricosum (W.) Ch. was used as the outgroup. The amplified products were digested with ten restriction endonucleases. A total of 79 restriction-site changes were scored in the sample. Wagner parsimony using the branch and bound option defined two lines of evolution in Musa. One lineage comprised species of the sections Australimusa and Callimusa which have a basic number of x = 10 chromosomes, while most species of sections Eumusa and Rhodochlamys (x = 11) formed the other lineage. Musa laterita Cheesman (Rhodochlamys) had identical organellar genome patterns as some subspecies of the Musa acuminata Colla complex. The progenitors of the cultivated bananas, M. acuminata and Musa balbisiana Colla, were evolutionarily distinct from each other. Musa balbisiana occupied a basal position in the cladogram indicating an evolutionarily primitive status. The close phylogenetic relationship between M. laterita and M. acuminata suggests that species of the section Rhodochlamys may constitute a secondary genepool for the improvement of cultivated bananas.Communicated by H.F. Linskens  相似文献   

4.
Musa acuminata Colla (AA genomes) and Musa balbisiana Colla (BB genomes) are the diploid ancestors of modern bananas that are mostly diploid or triploid cultivars with various combinations of the A and B genomes, including AA, AAA, BB, AAB and ABB. The objective of this study was to identify molecular markers that will facilitate discrimination of the A and B genomes, based on restriction-site variations in the internal transcribed spacers (ITS) of the nuclear ribosomal RNA genes. The ITS regions of seven M. acuminata and five M. balbisiana accessions were each amplified by PCR using specific primers. All accessions produced a 700-bp fragment that is equivalent in size to the ITS of most plants. This fragment was then digested with ten restriction enzymes (AluI, CfoI, DdeI, HaeIII, HinfI, HpaII, MspI, RsaI, Sau3AI and TaqI) and fractionated in 2% agarose gels, stained with ethidium bromide and visualized under UV light. The RsaI digest revealed a single 530-bp fragment unique to the A genome and two fragments of 350-bp and 180-bp that were specific to the B genome. A further 56 accessions representing AA, AAA, AAB, AB and ABB cultivars, and synthetic hybrids, were amplified and screened with RsaI. All accessions with an exclusively A genome showed only the 530-bp fragment, while accessions having only the B-genome lacked the 530-bp fragment but had the 350-bp and 180-bp fragments. Interspecific cultivars possessed all three fragments. The staining intensity of the B-genome markers increased with the number of B-genome complements. These markers can be used to determine the genome constitution of Musa accessions and hybrids at the nursery stage, and, therefore, greatly facilitate genome classification in Musa breeding.Communicated by H.F. Linskens  相似文献   

5.
Diversity Arrays Technology (DArT) is a DNA hybridisation-based molecular marker technique that can detect simultaneously variation at numerous genomic loci without sequence information. This efficiency makes it a potential tool for a quick and powerful assessment of the structure of germplasm collections. This article demonstrates the usefulness of DArT markers for genetic diversity analyses of Musa spp. genotypes. We developed four complexity reduction methods to generate DArT genomic representations and we tested their performance using 48 reference Musa genotypes. For these four complexity reduction methods, DArT markers displayed high polymorphism information content. We selected the two methods which generated the most polymorphic genomic representations (PstI/BstNI 16.8%, PstI/TaqI 16.1%) to analyze a panel of 168 Musa genotypes from two of the most important field collections of Musa in the world: Cirad (Neufchateau, Guadeloupe), and IITA (Ibadan, Nigeria). Since most edible cultivars are derived from two wild species, Musa acuminata (A genome) and Musa balbisiana (B genome), the study is restricted mostly to accessions of these two species and those derived from them. The genomic origin of the markers can help resolving the pedigree of valuable genotypes of unknown origin. A total of 836 markers were identified and used for genotyping. Ten percent of them were specific to the A genome and enabled targeting this genome portion in relatedness analysis among diverse ploidy constitutions. DArT markers revealed genetic relationships among Musa genotype consistent with those provided by the other markers technologies, but at a significantly higher resolution and speed and reduced cost.  相似文献   

6.

Background  

Musa species contain the fourth most important crop in developing countries. Here, we report the analysis of 6,252 BAC end-sequences, in order to view the sequence composition of the Musa acuminata genome in a cost effective and efficient manner.  相似文献   

7.
8.
In the present study, our intention was to elucidate the genetic relation of M. acuminata subspecies and analyse the diversity of the M. balbisiana gene-pool using nuclear ribosomal gene loci based marker system. Additionally the obtained information allowed elucidating the structure and ancestry of the nuclear genomes of diploid and triploid cultivars. By establishing the nucleotide sequence of the rDNA locus for M. acuminata and partially for M. balbisiana and their comparative analysis revealed that the 5′ETS region was the most divergent between acuminata and balbisiana genomes. Based on the SNP sites identified in this region a PCR based system was built, which revealed four gene-pools among M. acuminata wild types, while M. balbisiana showed no sequence divergence. The developed markers proved to be a powerful tool in the identification of the acuminata component of diploid and triploid hybrid cultivars and discovery of unexpected genotypes.  相似文献   

9.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

10.
Socioeconomic Value and Growth of Naturalized Musa balbisiana L. A. Colla Leaves in Honduras. Musa balbisiana (Musaceae) is a seed–producing diploid banana indigenous to Southeast Asia. After it was introduced to Honduras it became naturalized in nearby second–growth areas of the north coast. Local residents were quick to recognize the socioeconomic value of these wild banana leaves as a wrap for traditional nacatamales. To estimate the monetary value and to provide preliminary data on sustainable harvest of these leaves, interviews and field research were undertaken in 2009. From July to September of that year, each of 38 harvesters averaged a weekly sale of 4,400 cut, de–veined, and blanched M. balbisiana leaves. This weekly harvest sold for Lempiras (Lps.) 550.00 or ca. U.S. 30.00 to truckers, who transported them to major markets. The number of leaves produced in three months was estimated by two techniques: 1) The traditional cut of the entire pseudostem and 2) a careful cut to only remove useful leaves. The number of useful leaves cut at the onset of the study and three months later was 11 and 13 for techniques 1 and 2, respectively. This difference was not significant, but the more careful method did yield significantly wider, longer, and a greater number of total leaves (useful plus immature). This is the first field study to estimate leaf production by naturalized < i > M. balbisiana < /i > plants in Honduras. All leaves are currently harvested from wild populations and no sustainable management plans exist. The socioeconomic value and cultural use of < i > M. balbisiana < /i > leaves in Honduras is an example of an exotic species that has important socioeconomic benefits. This naturalized < i > Musa < /i > appearsM. balbisiana plants in Honduras. All leaves are currently harvested from wild populations and no sustainable management plans exist. The socioeconomic value and cultural use of M. balbisiana leaves in Honduras is an example of an exotic species that has important socioeconomic benefits. This naturalized Musa appears to have few of the negative impacts typically attributed to exotic plants.  相似文献   

11.
Initial molecular phylogenetic studies established the monophylly of the large genus Croton (Euphorbiaceae s.s.) and suggested that the group originated in the New World. A denser and more targeted sampling of Croton species points to a South American origin for the genus. The nuclear and chloroplast genomes indicate a different rooting for the phylogeny of Croton. Although we favor the rooting indicated by the chloroplast data our conclusions are also consistent with the topology inferred from the nuclear data. The satellite genera Cubacroton and Moacroton are embedded within Croton. These two genera are synonimized into Croton and a new subgenus, Croton subgenus Moacroton, is circumscribed to include them and their allied Croton species. Croton subgenus Moacroton is morphologically characterized by a primarily lepidote indumentum, bifid or simple styles, and pistillate flowers with sepals that are connate at the base. This newly circumscribed subgenus is found from North America to South America, and in contrast to the majority of Croton species most of its members are found in mesic habitats. The group is most diverse in the greater Caribbean basin. A molecular clock was calibrated to the phylogeny using the available Euphorbiaceae fossils. The timing and pattern of diversification of Croton is consistent with both the GAARlandia and Laurasian migration hypotheses. A single species, Croton poecilanthus from Puerto Rico, is placed incongruently by its nuclear and chloroplast genomes. The possibility of this species being of hybrid origin is discussed.   相似文献   

12.
The transfer of desired traits from related wild diploid Coffea species into the cultivated allotetraploid C. arabica is essential in coffee breeding to develop pest/disease-resistant cultivars. The present work is an attempt to gain insights into alien introgression in C. arabica. An F2 population derived from a cross between T5296 and Et6 was analysed with simple sequence repeat (SSR; microsatellite) and amplified fragment length polymorphism (AFLP) molecular markers. The T5296 is a derivative of an interspecific hybrid introgressed by the diploid C. canephora species and Et6 is a wild Ethiopian accession of C. arabica. The origin of the revealed polymorphism was determined by comparisons using representative accessions from C. arabica and its two diploid parental species, C. eugenioides and C. canephora. The number and mode of inheritance of canephora-introgressed segments were investigated, as well as their sub-genome localisation and rate of recombination. The results suggested that the transfer of desirable genes into C. arabica from C. canephora is not limited by the ploidy level differences or the suppression of recombination between the different genomes.  相似文献   

13.
Summary Somatic hybrid plants were regenerated via electrofusion between leaf-derived protoplasts of ‘Chicken heart’ sweet wampee (Clausena lansium) and embryogenic protoplasts of ‘Newhall’ navel orange (Citrus sinensis Osbeck). Most of the complete plantlets were formed via mini-grafting. Flow cytometry showed that most of the regenerants were tetraploids as expected, but unexpectedly three plantlets were triploids. Simple sequence repeat (SSR) analysis of seven randomly selected tetraploids and the three triploids showed that they had specific fragments from both fusion parents, thereby confirming their hybridity. Analysis of cytoplasmic genomes using universal primers revealed that their chloroplast DNA (cpDNA) band pattern was identical to the mesophyll parent, while their mitochondrial genomes were of the navel orange type. According to the SSR results, the triploids obtained in this study were most likely due to chromosome elimination of ‘Chicken heart’ sweet wampee prior to plant regeneration.  相似文献   

14.
The origin of triploid export banana cultivars was investigated. They all belong to Cavendish and Gros Michel subgroups of triploid clones and have a monospecific Musa acuminata origin. The appearance of these cultivars is thought to be result of hybridization between partially sterile diploid cultivars producing non reduced gametes and fertile diploids producing normal haploid gametes. To trace these diploid ancestors we compared the RFLP patterns, revealed by 36 probe/enzyme combinations, of 176 diploid clones representing the worldwide available variability with that of clones from the Cavendish and Gros Michel subgroups. This lead us to the identification of the common putative diploid ancestor of cultivars from Cavendish and Gros Michel subgroups which contributed to triploid cultivar formation through the production of 2n restitution gametes. For cultivars of Gros Michel subgroup we also propose a normal gamete donor that may have complemented the triploid allele set.  相似文献   

15.
Genetic diversity and relationships were assessed in 28 accessions of Musa acuminata (AA) Colla and Musa balbisiana (BB) Colla, and some of their natural hybrids, using the amplified fragment length polymorphisms (AFLP) technique. Fifteen AFLP +3 primer pairs produced 527 polymorphic bands among the accessions. Neighbor-joining and principal co-ordinate (PCO) analyses using Jaccard's similarity coefficient produced four major clusters that closely corresponded with the genome composition of the accessions (AA, BB, AAB and ABB). The AFLP data distinguished between the wild diploid accessions and suggested new subspecies relationships in the M. acuminata complex that are different from those based on morphological data. The data suggested that there are three subspecies within the M. acuminata complex (ssp. burmannica Simmonds, malaccensis Simmonds, and microcarpa Simmonds). 'Tjau Lagada' (ssp. microcarpa), 'Truncata' [ssp truncata (Ridl.) Shepherd] and 'SF247' [ssp. banksii (F.Muell) Simmonds] clustered very closely with 'Gros Michel' and 'Km 5', indicating that more than one M. acuminata subspecies may be involved in the origin of triploid AAA bananas. 'Calcutta 4' (ssp. burmannicoides De Langhe &; Devreux) and 'Long Tavoy' (ssp. burmannica) were closely related and could be together in the same subspecies. This study also showed that there is much more genetic diversity within M. balbisiana that was split into two groups: (1) 'I-63' and 'HND' and (2) 'Los Banos', 'MPL' (Montpellier), '10852', 'Singapuri', 'Etikehel', and 'Butohan 1' as the other.  相似文献   

16.
Somatic hybrids were produced by protoplast fusion between Arabidopsis thaliana ecotype Columbia and a male-sterile radish line MS-Gensuke (Raphanus sativus) with the Ogura cytoplasm. Forty-one shoots were differentiated from the regenerated calli and established as shoot cultures in vitro. About 20 of these shoots were judged to be hybrids based on growth characteristics and morphology. Molecular analyses of 11 shoots were performed, confirming the hybrid features. Of these 11 shoots, eight were established as rooted plants in the greenhouse. Polymerase chain reaction and randomly amplified polymorphic DNA analyses of the nuclear genomes of all analyzed shoots and plants confirmed that they contained hybrid DNA patterns. Their chromosome numbers also supported the hybrid nature of the plants. Investigations of the organelles in the hybrids revealed that the chloroplast (cp) genome was exclusively represented by radish cpDNA, while the mitochondrial DNA configuration showed a combination of both parental genomes as well as fragments unique to the hybrids. Hybrid plants that flowered were male-sterile independent of the presence of the Ogura CMS-gene orf138.Abbreviations CMS Cytoplasmic male sterilityCommunicated by M.R. Davey  相似文献   

17.
The name Microlicia acuminata Cogn. is a later homonym of M. acuminata Naudin. Microlicia hirticalyx is proposed as a new name.  相似文献   

18.
A procedure for in vitro plant regeneration of Alnus acuminata from epicotyls with cotyledonary buds was developed using different media formulations with different growth regulators and carbon sources. The development of multiple buds on explants at the initiation step was obtained with MS at 1/2 strength with either 1 or 2M of BAP but not without it. Multiplication gave up to 15 elongating shoots by explant, the best medium being MS supplemented with vitamins from B5 medium, 1M of BAP and 87mM sucrose. Rooting of about 88% occurred in the medium MS with 83 mM sucrose and 1M IBA. Alnus acuminata did not developed well on WPM. Roots of in vitro propagated plants were nodulated by Alnus-infective Frankia. The root nodules show a typical alder root nodule anatomy and differentiation pattern and effectively fixed nitrogen. Rhamnaceae-infective Frankia did not nodulate in vitro cultivated Alnus acuminata suggesting that symbiotic recognition was not altered by in vitro regeneration of the plant.  相似文献   

19.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

20.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号