首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to those usually mentioned in textbooks on comparative anatomy, the anuran skin contains, in many species, a layer situated between the stratum compactum and the stratum spongiosum which is acellular and which has a selective tinctorial affinity for Alizarine, haematoxylin, Alcian Blue and ionized iron. The indications are that this layer consists of acid mucopolysaccharides and calcium. This layer is most prominently developed in the more differentiated anuran families. It is almost entirely absent in the aquatic species but predominantly present in the terrestrial forms. Presumably this layer plays an important part in the defence mechanism of the Anura against desiccation.  相似文献   

2.
松江鲈鱼皮肤的显微和亚显微结构   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电镜和透射电镜,对松江鲈鱼(Trachidermus fasciatus)成体皮肤的显微和亚显微结构进行了观察。结果表明,松江鲈鱼体表不同部位皮肤的厚薄不一,但基本结构相似。皮肤由表皮和真皮层构成。松江鲈鱼的皮肤裸露无鳞,表皮层较薄,由约4~8层细胞构成,主要由复层上皮细胞和黏液细胞及基底细胞组成。表层细胞呈扁平、多边形,细胞之间主要靠桥粒紧密连接,连接处形成增厚的边缘嵴状突起。表皮细胞游离面向内凹陷,表面形成指纹状微嵴。黏液细胞呈圆形或卵圆形,散布在上皮细胞之间。黏液细胞内的黏原颗粒具有椭圆颗粒状、均匀致密的块状和疏松丝状3种不同形态。真皮通过基膜与表皮相连,由稀疏层和致密层构成。真皮结缔组织在腹部较厚而在其他部位较薄。表皮与真皮连接处有色素层,头部、背部、尾柄和体侧皮肤色素细胞分布多,色素层明显,而腹部和颏部皮肤缺少色素。松江鲈鱼黄河群体真皮层中有角质棘状突起,而滦河群体则无。头部、体侧和尾柄处皮肤上还分布有侧线孔和表面神经丘等感觉器官。  相似文献   

3.
Spore sculpture and wall structure of eight Cyathea (Cyatheaceae) species from southern South America were studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Two layers, i.e. an inner and an outer layer, were observed in the perispore. The inner layer has two strata: the inner stratum is attached to the exospore and composed of rodlets tangentially oriented to the spore surface and randomly intermixed; the outer stratum consists of a three-dimensional network of rodlets with either free or fused distal edges forming spinules. The outer layer is thin, darkly contrasted and covers the rodlets. In most cases, the exospore has two layers and a pitted surface. In Cyathea atrovirens, the exospore surface is smooth, while in C. delgadii and C. myriotricha it is verrucate. The homogeneity of perispore features within the genus Cyathea is evident, while exospore features are heterogeneous. The exospore has different kinds of surface-structures that are of potential interest for assessing evolutionary trends within the group.  相似文献   

4.
Epidermal structure of the amphibious mudskipper, Scartelaos gigas (Gobiidae), was investigated in relation to their terrestrial adaptation whereby a histological study on the epidermis of 15 regions including nine body regions, five fins and the sucking disc was carried out. The structure of the epidermis consists of three layers: an outermost layer with polygonal cells or rather flattened cells, small cells and mucous cells; a thick middle layer with voluminous cells swollen by epidermal cells; and the stratum germinativum. A dermal bulge was located at each apical area of the epidermis of almost all body regions, but was not existent in the operculum and the appendages, including none of the fins or the sucking disc. In the epidermis of the body regions, the dermal bulges had numerous dermal capillaries just beneath the stratum germinativum. By contrast, the appendages never had dermal capillaries due to the absence of the dermal bulge. Based on these results, the cutaneous air uptake in S. gigas would seem to be more effective in the upper body regions that are most often exposed to air than in the lower body regions, however, cutaneous air uptake is not likely to occur in the appendages.  相似文献   

5.
South American Pipidae show a unique reproductive mode, in which the fertilized eggs develop in temporarily formed brood chambers of the dorsal skin after eggs have been deposited on the back of the female. We studied the skin incubation of Pipa carvalhoi using light microscopy and scanning electron microscopy. The skin consists of a stratified epithelium with a one‐layered stratum corneum, and the dermis. The dermis of the dorsal skin of nonreproductive and reproductive females lacks a distinct stratum compactum, which is typical for most anuran skins. The entire dermis shows irregularly arranged collagen bundles like a stratum spongiosum. Before egg laying, the skin swells, primarily by thickening and further by loosening of the middle zone of the dermis. In the epidermis, large furrows develop that are the prospective sites of egg nidation. The epidermis, which forms a brood chamber around the developing egg becomes bi‐layered and very thin and lacks a stratum corneum. Further, the dermis loosens and becomes heavily vascularized. Egg carrying females do not have mature oocytes in their ovaries indicating a slow down or interruption of egg maturation during this period. Similarities with the brood pouch of marsupial frogs are discussed. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The integumental melanophores of Latimeria chalumnae were studied by light and electron microscopy. The epidermal melanophore located in the mid-epidermis consists of a round perikaryon with long slender dendrites extending into epidermal cells and intercellular spaces. The dermal melanophores occur in the loose dermal matrix underlying a relatively thick layer of collagen fibers. The dermal melanophores are usually flattened and their dendrites lie parallel to the collagen layer. Both epidermal and dermal melanophores contain oval, electron-opaque melanosomes, large mitochondria, agranular vacuoles of endoplasmic reticulum and microtubules. Microfilaments and RNP particles are less conspicuous. While the peripheral cytoplasm of both dermal and epidermal melanophores is filled with a large number of melanosomes, the perinuclear cytoplasm of many dermal melanophores is occupied by premelanosomes in various stages of differentiation, and that of the epidermal melanophore contains numerous large vacuoles. Despite the scarcity of epidermal melanophores, the epidermal melanin unit is present in the form of melanosome complexes. In addition, the melanophores of Latimeria possess the basic characteristics common to other vertebrates, but they more closely resemble those of lungfish and other aquatic vertebrates.  相似文献   

7.
The morphological origin of the dark and pink‐orange areas in the skin of the venomous lizard Heloderma suspectum is not known. Histology and electron microscopy show that dark‐grey areas of the skin derived from dermal chromatophores localized in specific areas present underneath the epidermis. A dynamic chromatophoric unit in the dermis is absent. In the darkest areas of the skin, the accumulation of melanosomes in cells of the beta‐layer contributes to increase the black intensity. In the orange‐pink areas, the superficial dermis contains xantophores storing numerous carotenoid vesicles, rare or absent lamellated pterinosomes and a variable number of melanosomes. These xanto‐melanophores predominate over the remaining chromatophores and form a continuous stratum underneath the epidermis. Beneath this lipoid‐rich stratum, iridophores are infrequent and do not form a continuous layer in the dermis. In the paler areas of the skin, melanophores are sparse in both superficial and deeper part of the dermis where irregularly oriented bundles of collagen fibrils are present. The prevalent xanto‐melanophores localized in the pink‐orange areas of the skin contribute to an effective sunlight protection in desert conditions in addition to the darker regions occupied by melanophores.  相似文献   

8.
Layers of cells limiting the deep face of the dermis and lining the scale pockets can be described as endothelial, using the term in the broad sense. A dermal endothelium has been found in lampreys and in teleosts of diverse form and habits; it consists of a single layer of modified fibrocytes joined by desmosomal and other junctions and having hemidesmosomes and numerous caveolae intracellulares . A fibrous zone interpreted as elastic tissue intervenes between the dermal endothelium and the collagen of the stratum compactum . The scale pocket lining consists of cells with caveolae, desmosomes, hemidesmosomes and usually with basement membrane. The lining may be one or two cells thick and may occur on both aspects of the scale pocket or only on the deeper side, depending on the species. The fine structure of these endothelial layers is compared with that of the vascular and lymphatic endothelia, the scale-forming cells, the perineurium and the peritoneal lining.  相似文献   

9.
This paper aims to clarify an expression of epidermal growth factor receptor (EGFR) and cytokeratin 10 and/or 11 in relation to primary and secondary epidermal ridge formation of the human fetus. Firstly, scanning electron microscopy revealed heterogeneity in basal cell morphology during epidermal ridge formation. Basal cells had a uniform, smooth, and polygonal dermal surface until formation of the primary epidermal ridges. Thereafter, the dermal surface became ruffled and elliptic except at the primary epidermal ridges. Secondly, EGFR was detected by monoclonal antibody and autoradiography using 125I-EGF. The antibody reacted with primary epidermal ridge, stratum basale, stratum intermedium, and outer layer of sweat duct. The reactivity became stronger at the primary epidermal ridge than at the secondary one. The binding of 125I-EGF was concentrated in the primary epidermal ridge and sweat duct. Thirdly, cytokeratin 10 and/or 11, a maturation marker of keratinocytes, was detected by monoclonal antibody. The antibody reacted only with the stratum intermedium before secondary epidermal ridge formation. Afterward, it also reacted with the stratum basale of the secondary epidermal ridge but never reacted with that of primary epidermal ridge. The results indicate that basal cells of the secondary epidermal ridge enter the maturation process and suggest a localization of epidermal stem cells on the primary epidermal ridges. Concerning epidermal ridge formation, we suppose that the formation of the primary epidermal ridge causes the segregation of the epidermal stem cells, and that the increased density of the basal cells between the two primary epidermal ridges brings about the change in their dermal surface shape and the formation of the secondary epidermal ridge.  相似文献   

10.
The functional organization of the bovine rumen epithelium has been examined by electron and light microscopy combined with immunocytochemistry to define a transport model for this epithelium. Expression of connexin 43, an integral component of gap junctions, the tight-junction molecules claudin-1 and zonula occludens 1 (ZO-1), and the catalytic alpha-subunit of Na(+)-K(+)-ATPase was demonstrated by SDS-PAGE and Western blotting. From the lumen surface, four cell layers can be distinguished: the stratum corneum, the stratum granulosum, the stratum spinosum, and the stratum basale. Both claudin-1 and ZO-1 immunostaining showed plasma membrane staining, which was present at the stratum granulosum with decreasing intensity through the stratum spinosum to the stratum basale. The stratum corneum was negative for claudin-1 immunostaining. Transmission electron microscopy confirmed that occluding tight junctions were present at the stratum granulosum. Plasma membrane connexin 43 immunostaining was most intense at the stratum granulosum and decreased in intensity through stratum spinosum and stratum basale. There was intense immunostaining of the stratum basale for Na(+)-K(+)-ATPase, with weak staining of the stratum spinosum. Both the stratum granulosum and the stratum corneum were essentially negative. Stratum basale cells also displayed a high mitochondrial density relative to more apical cell layers. We conclude that epithelial barrier function may be attributed to the stratum granulosum and that cell-cell gap junctions allow diffusion to interconnect the barrier cell layer with the stratum basale where Na(+)-K(+)-ATPase is concentrated.  相似文献   

11.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

12.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

13.
The orientation of the fibers in the dermis of the tiger salamander, Ambystoma tigrinum, undergoes a dramatic repatterning at metamorphosis. The pre-metamorphic, larval dermis is a tight layer composed of crossed fibers that wind helically around the trunk. This condition is retained by neotenic adults which do not undergo metamorphosis. In contrast, the neotenic adults which do not undergo metamorphosis. In contrast, the metamorphosed adult dermis consists of a superficial, loose network of fibers invested with large multicellular glands--the stratum spongiosum--and a deeper tight layer of fibers--the stratum densum. However, unlike the crossed fibers of the pre-metamorphic dermis, there is no preferred orientation to the fibers in either layer of the post-metamorphic dermis. In order to evaluate whether these two distinctly different fiber patterns are constructed from biochemically similar fibers, the collagen types present in the pre- and post-metamorphic dermis were determined using SDS-polyacrylamide gel electrophoresis. Type I collagen is the predominant collagen of the dermis and the same major collagen types are present for all individuals, whether pre- or post-metamorphic. Thus, the major types of collagen that compose the dermal fibers do not change during metamorphic repatterning of the dermis.  相似文献   

14.
The ultrastructure of the epidermis of the lizard ( Lacerta vivipara ) one day after sloughing is described. The non-keratinized layers of the epidermis are essentially similar in structure to those of amphibians and mammals. The cells of the basal layer are not however separated from each other by the large spaces described in the amphibian (Farquhar & Palade, 1965). The middle layers of the epidermis at this stage of the sloughing cycle produce neither the characteristic mucous granules found in amphibians nor the keratohyalin granules of mammals. A small number of granules corresponding in size and location to the "Odland bodies" of both mammalian and amphibian epidermis are, however, present. The intermediate layer cells also contain a number of bodies similar in appearance to those described by Farquhar & Palade as lysosomes in amphibian skin. These structures are both osmium iodide and acid phosphatase positive. Unlike the condition in amphibians and mammals, the cytoplasm of cells in the layer immediately beneath the keratinized strata is honeycombed with small vesicles, and contains large irregular vacuoles of uncertain content. Certain nonkeratinizing elements within the epidermis are tentatively interpreted as nerve terminations. Two morphologically distinct keratinized strata can be distinguished, the inner stratum consisting of flattened cells similar to those of the stratum corneum of mammalian epidermis; individual cell outlines cannot be distinguished in the outer stratum, which has a structure similar to that of avian feather keratin. A shallow surface zone of the outer keratinized stratum has been identified as the Oberhautchen. This consists of longitudinally disposed leaflets or laminae which are responsible for the sculptured pattern of the epidermal surface. The observations reported here provide a basis for analysis of changes occurring at other stages of the sloughing cycle.  相似文献   

15.
The cyst wall of Opisthonecta henneguyi has been studied ultrastructurally and cytochemically by light and electron microscopy, as well as by chemical and electrophoretic analyses, to examine the structure of the cyst wall and its composition. The cyst wall consists of four morphologically distinct layers. The ectocyst is a thin dense layer. The mesocyst is the thickest layer and is composed of a compact material. The endocyst is a thin layer like the ectocyst, but less dense. The granular layer varies in thickness and is composed of a granular material. In the resting cyst, kinetosomes of both oral apparatus and trochal band as well as the myoneme system are maintained, and only cilia are resorbed. The sugars present in the cyst wall are predominantly N-acetylglucosamine (90%) and glucose (10%). The mesocyst is composed of chitin, and the endocyst includes glycoproteins and acid mucopolysaccharides. During secretion of the cyst wall, the endocyst and granular layer are secreted from precursors synthesized "de novo". No cytoplasmic precursors of ectocyst and mesocyst have been detected.  相似文献   

16.
The geometrical characteristics of fibrillar organizations are studied by electron microscopy in structures obtained in vitro in cell-free assembled collagen gels, and in vivo in dermal tracts of anuran skin. We analyze several characteristics of the fibrils including the diameter, the outline, the curvature and the extrafibrillar space. We analyze also the variation of fibrillar orientation (twist) in longitudinal and transverse thin sections of these structures. The results are compared in the Discussion to determine to what extent these fibrillar patterns are similar to liquid crystalline organizations and to what extent they result from a self-assembly or a cell-assembly process.  相似文献   

17.
The ubiquitous intracellular molecule myo-inositol hexakisphosphate (IP6) is present extracellularly in the hydatid cyst wall (HCW) of the parasitic cestode Echinococcus granulosus. This study shows that extracellular IP6 is present as its solid calcium salt, in the form of deposits that are observed, at the ultrastructural level, as naturally electron dense granules some tens of nanometers in diameter. The presence of a calcium salt of IP6 in these structures was determined by two different electron microscopy techniques: (i) the analysis of the spatial distribution of phosphorus and calcium in the outer, acellular layer of the HCW (the laminated layer, LL) through electron energy loss spectroscopy, and (ii) the observation, by transmission electron microscopy, of HCW that were selectively depleted of IP6 by treatment with EGTA or phytase, an enzyme that catalyses the dephosphorylation of IP6. The deposits of the IP6-Ca(II) salt are also observed inside membrane vesicles in cells of the germinal layer (the inner, cellular layer of the HCW), indicating that IP6 precipitates with calcium within a cellular vesicular compartment and is then secreted to the LL. Thus, much as in plants (that produce vesicular IP6 deposits), the existence of transporters for IP6 or its precursors in internal membranes is needed to explain the compound's cellular localisation in E. granulosus.  相似文献   

18.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

19.
Human stratum corneum (SC) consists of several layers of keratinized corneocytes embedded in a lipid matrix of ordered lamellar structure which is considered to constitute the major barrier to percutaneous penetration. Artificial mixtures of SC lipids are often used as model systems to mimic the skin barrier or to investigate the effects of substances on the phase behaviour of the models. In the present study a SC lipid model composed of cholesterol, fatty acids and ceramides was used to investigate the effect of three different commercially available ceramide types on the microstructure and the physicochemical behaviour of the lipids. Polarized light microscopy, transmission electron microscopy, small-angle X-ray diffraction, wide-angle X-ray diffraction and differential scanning calorimetry (DSC) were used for physicochemical characterization. The results revealed a lamellar structure for all models but showed differences with regard to the thermal and optical behaviour depending obviously on the composition of the ceramide mixtures. A model containing a mixture of Cer[AS] was comparable to human SC lipids.  相似文献   

20.
Papillomatous growths on the ventral surface of the body and paired fins of the white sturgeon,Acipenser transmontanus Richardson, were described histologically with the aid of light and electron microscopy. Contrary to the usual state of intact squamous epithelium being equipped with microridges, no such surface structures were apparent in the papillomatous tissue. The growths appeared to be an aberrant elevations of proliferated dermal tissue, which sustains the hyperplastic Malpighian layer consisting of the stratum spinosum (prickle cell layer) and sbasale. Many intercellular bridges were found, constructed from prominent projections, with distinct demosomes and many tonofilaments. The likely causative agent was mechanical irritation between the small aquarium tank and growing sturgeon, since no viral and/or parasitic inclusion bodies were encountered in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号