首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
为探讨小麦杂种优势形成的分子机理,以一套双列杂交组合的苗期叶片为材料,利用mRNA差异显示技术分析了杂种及其亲本间MADS-box、G- box、Ser/Thr蛋白激酶、EIF-4A、ARF1基因家族共5类家族基因在杂交种和亲本之间的表达差异。并与杂种性状表现和杂种优势进行了相关分析。结果发现,除ARF1家族基因外,其余家族基因在杂种和亲本间存在显著的表达差异,差异表达类型可概括为4种:(1)双亲共沉默;(20单亲表达沉默;(3)杂种特异表达;(4)单亲表达一致。分析发现,MADS-box、G-box和EIF-4A家族基因在杂种和亲本间的差异表达模式相似,均以单亲特异表达和种特异表达类型所占比例最高。相关分析结果表明,以上所有家族基因的总体差异表达程度与所有性状的杂种表现均不相关,MADS-box家族基因中杂种特异表达类型与小穗数、单株产量和单穗产量杂种优势呈显著正相关,双亲共沉默类型与小穗数、千粒重和单穗产量杂种优势呈显著负相关,另外,EIF-4A家族基因中单亲表达一致型与单穗产量杂种优势呈显著正相,但双亲共沉默类型与小穗数和单穗产量杂种优势呈显著负相关,对于G-box基因家族而言,仅小穗数杂种优势和双亲共沉默类型成显著负相关,而蛋白激酶家族基因的各种差异类型与性状杂种优势的相关分析均不显著。这些研究表明,调控基因的差异表达与杂种优势形成有密切关系。  相似文献   

2.
玉米雌穗发育期基因差异表达与杂种优势的研究   总被引:6,自引:0,他引:6  
杂种优势在提高粮食作物特别是玉米的产量方面具有重要的作用。然而,杂种优势的原理却仍然是一个世界性的难题。用12个玉米自交系及其按不完全双列杂交组配的33个杂交种为材料,分4个不同发育时期取杂交种及其亲本的雌穗组织,利用差异显示技术,分析杂种与亲本的基因差异表达类型及其与7个主要农艺性状的杂种表现和杂种优势的相关关系。发现1):在5种表达类型中单态表达(基因在杂交种和双亲中同时表达的类型)的数量最大,这说明杂种优势的形成不仅与基因的表达与否相关,还与大量基因的上调或下调表达相关;2):在玉米雌幼穗的发育初期杂交种与双亲的基因表达差异最大,这可能与雌穗发育初期器官的形成和发育相关,因此这一时期差异表达(在质的方面)的基因对产量性状和杂种优势的形成具有密切关系;3):综合各种基因表达类型与产量性状和杂种优势的关系,发现某些基因在杂种中的沉默表达可以促进籽粒的发育和抑制幼穗中小花的发育。  相似文献   

3.
王翔  边银丙  肖扬  戴耀红 《菌物研究》2012,10(3):190-194
以香菇(Lentinula edodes)4个菌株为亲本组成3个杂交组合,采用单孢菌株配对获得杂交子,观察锁状联合鉴别出真正的杂交子,测定杂交子及其亲本的农艺性状。在每个杂交组合中分别各选取3个杂交子,研究杂交子和亲本在子实体发育阶段差异基因表达情况。结果表明:杂交子共有4种基因表达类型:双亲沉默型(W1型),单亲沉默型(W2型),杂交子特异表达型(W3型),单亲表达型(W4型)。香菇杂交子农艺性状与基因差异表达类型的相关性分析表明:菌盖厚与双亲沉默型(W1型)呈极显著负相关,而菌柄长与单亲沉默型(W2型)呈显著负相关。  相似文献   

4.
采用DDRT-PCR技术,以棉花盛花期项尖叶片cDNA为材料,对上海生物工程公司合成的专用于基因差异显示分析的3个锚定引物和全套26个随机引物进行筛选,最后选择了15个扩增差异带丰富的随机引物。采用3个锚定引物和这15个随机引物组成的45对引物组合对24个抗虫棉杂交组合及其10亲本盛花期叶片cDNA进行扩增和差显,2次扩增重复率达70.1%,表明在扩增过程中存在较高的假阳性,通过重复PCR扩增,统计稳定扩增的条带,可减少假阳性干扰。根据基因表达方式,将其划分5种模式:MI为双亲表达沉默,双亲出现条带而杂种没有条带;M2为单亲表达沉默,带仅出现在亲本之一,包括仅母本有带而父本和杂种无带和仅父本有带而母本和杂种无带2种表达方式:M3为杂种特异表达,带仅出现在杂种,双亲无带;M4为单亲表达一致,带在双亲之一和杂种中出现,而在另一亲本中不出现,包括母本、杂种中有带而父本无带和父本、杂种中有带而母本无带2种方式;M5为基因表达一致,带在双亲和杂种中均出现。差显表达模式比例与产量性状和杂种优势分析表明:M4与所有产量性状均呈正相关,并且与单位面积铃数相关达显著水平,其他各种模式与杂种产量性状表型值均未达到显著水平;M2与单位面积铃数杂种优势呈显著负相关,M3与皮棉产量杂种优势呈显著正相关。上述结果表明,盛花期叶片中的基因显性表达和杂种特异表达有利于产量形成和杂种优势发挥。  相似文献   

5.
以4份高粱不育系和5种类型苏丹草为亲本,按照NCⅡ设计配制成20个杂交组合,分析各组合及亲本的表型值和中亲及超亲优势并筛选出8个优势强的组合为试材,利用cDNA-AFLP技术,分析杂种与亲本苗期叶片基因差异表达类型与主要产量性状的杂种表现及杂种优势的关系。研究表明:(1)12对引物共扩增出315条TDFs,杂种与亲本间基因表达类型有:单亲表达一致一型(P1F1型)和二型(P2F1型)、杂种特异表达类型(F1型)、单亲表达沉默一型(P1型)和二型(P2型)、双亲共沉默类型(P1P2型)和杂种亲本表达一致型(P1F1P2型)7种。(2)在差异展示类型与产量构成因素的相关分析中,有效分蘖数与P1F1型(0.726**)呈极显著正相关,单株鲜重与P1P2型(0.659*)、叶长与P2型(0.647*)呈显著正相关,成株期叶片数与F1型(-0.81**)呈极显著负相关。在与中亲优势相关分析中发现,单株鲜重与P1(0.695*)、P2(0.637*)呈显著正相关,单株鲜重与P1F1P2型(0.743**)呈极显著正相关,叶宽与P1P2型(-0.619*)呈显著负相关。在与超亲优势进行相关分析后发现,穗长与P2F1型(0.732**)呈极显著正相关,叶宽与P2F1型(-0.731**)以及P1P2型(-0.731**)呈极显著负相关。(3)差异展示类型P1F1、P2F1、P1和P2是显性效应类型,共占总检测的91.4%。差异展示类型F1和P1P2表现超显性,共占总检测的4.8%,说明各个性状的杂种表现主要受到的是(超)显性效应影响。(4)对8个与高丹草杂种优势相关的TDFs进行回收及BLAST分析均得到同源核苷酸,并且找到7个同源蛋白,这些蛋白质在控制植物生长发育方面具有重要作用。(5)将克隆测序获得差异片段的核苷酸序列,采用半定量RT-PCR进行了验证。本研究为进一步揭示高丹草杂种优势的分子机制和提高高丹草强优势组合的筛选效率以及种质资源的创建提供依据。  相似文献   

6.
为深入探讨小麦杂种优势形成的分子机理,选取3个冬小麦品种(系)为一组亲本,3个为另一组亲本,配制了正反交18个杂交组合,以授粉后6d的杂交和自交种子为材料,应用mRNA差异显示技术(DDRT—PCR)研究了小麦杂交当代种子与其亲本自交种子基因的表达差异,并与杂种优势进行相关分析。为降低DDRT—PCR技术假阳性的不利影响,对每个引物组合均作了两次PCR扩增,在处理数据时,仅统计能重复出现的条带。结果发现:杂交种和亲本之间的基因表达模式有8类共15种:(1)单亲沉默型(2种),(2)单亲一致型(2种),(3)正交或反交沉默型(2种),(4)正交或反交特异型(2种),(5)正交或反交单亲一致型(4种),(6)杂交种特异型(1种),(7)双亲共沉默型(1种),(8)表达一致型(1种)。分析发现,小麦杂交种和亲本间存在显著的表达差异。在差异表达类型中,杂交种特异型和双亲共沉默型比例最低。对上述15种表达模式与杂种优势进行相关分析,结果表明,表达一致型与各产量性状杂种优势之间的相关均不显著,说明杂种优势是由某些有表达差异的基因造成。9个产量性状均能检测到一种以上与其显著或极显著相关的基因表达模式,有些性状受正负相关效应的共同影响;沉默型(包括单亲沉默型、正交或反交沉默型和双亲共沉默型)和正交或反交单亲一致型在杂种优势形成中发挥重要作用。这些研究表明,在种子发育早期,基因的差异表达与杂种优势形成之间可能存在较为复杂的关系。  相似文献   

7.
陕西关中地区杂种小麦强优势组合优势型研究   总被引:1,自引:0,他引:1  
选用在陕西关中地区表现优良且某一农艺性状表现突出的11个冬小麦品种(系),根据农艺性状分为大粒型、多穗型、穗重型和中间型4类,组成6种NCII杂交组合模式,研究不同组合模式的杂种优势,探讨根据农艺性状划分杂种小麦亲本优势型在杂种小麦强优势组合选配中的应用.结果表明:在所组配的6种组合模式中,以大粒×多穗型组合模式表现突出,其杂种优势、超亲优势和超标优势均明显高于其它组合,分别达到了59.9%、37.1%和22.5%,因此,依据杂种小麦亲本农艺性状进行亲本优势型划分可以作为杂种小麦亲本选配的依据之一.在陕西关中地区以大粒×多穗型为杂种小麦强优势组合组配模式.  相似文献   

8.
利用3个多子房小麦与8个普通小麦品种杂交后获得的24个杂种及其相应的亲本材料,对多子房小麦的杂种优势与利用进行了研究。结果表明,F1各性状的杂种优势依次为株高>穗粒数>单株产量>千粒重。单株产量有较强的杂种优势,18个组合超双亲均值,平均均产32.71%,12个组合有超标正优势,幅度为3.41-42.84%。多子房小麦杂种优势的主要表现是穗粒数增多,其生产应用还应注意加强对子房小麦其它农艺性状的改良。  相似文献   

9.
为探讨小麦(Triticum aestivum L.)杂种优势形成的分子机理,选用普通小麦品种(系)3338、6554和2410TD及其强优势杂种A(3338×6654)和无优势杂种B(2410TD×6554),采用mRNA差异显示技术,对生长至三叶一心的根系(初生根)基因表达差异进行了比较研究.结果发现,小麦杂种一代苗期根系基因表达较亲本明显不同,表现为数量水平和质量水平上的差异,且差异表达基因的数目远高于我们以苗期叶片为材料的研究结果,表明小麦杂交种与其亲本间的基因差异表达与所研究的组织和器官有关.比较分析发现,在强优势杂种组合A中,超亲表达和偏高亲表达基因所占比例均明显高于无优势杂种组合B.以家族特异基因替代随机引物进行的差异显示结果表明,MADS-box家族基因在小麦杂交种和亲本苗期根系中存在着显著的表达差异,且差异表达类型以杂种特异表达和亲本基因在杂种一代沉默为主,说明MADS-box家族基因可能与小麦的杂种优势形成具有重要关系.对杂种和亲本基因表达差异与杂种优势的关系进行了分析和讨论.  相似文献   

10.
普通小麦不同优势杂交种及其亲本苗期根系基因的差异表达   总被引:16,自引:0,他引:16  
为探讨小麦 (TriticumaestivumL .)杂种优势形成的分子机理 ,选用普通小麦品种 (系 ) 3338、6 5 5 4和 2 410TD及其强优势杂种A(3338× 6 6 5 4)和无优势杂种B(2 410TD× 6 5 5 4) ,采用mRNA差异显示技术 ,对生长至三叶一心的根系 (初生根 )基因表达差异进行了比较研究。结果发现 ,小麦杂种一代苗期根系基因表达较亲本明显不同 ,表现为数量水平和质量水平上的差异 ,且差异表达基因的数目远高于我们以苗期叶片为材料的研究结果 ,表明小麦杂交种与其亲本间的基因差异表达与所研究的组织和器官有关。比较分析发现 ,在强优势杂种组合A中 ,超亲表达和偏高亲表达基因所占比例均明显高于无优势杂种组合B。以家族特异基因替代随机引物进行的差异显示结果表明 ,MADS_box家族基因在小麦杂交种和亲本苗期根系中存在着显著的表达差异 ,且差异表达类型以杂种特异表达和亲本基因在杂种一代沉默为主 ,说明MADS_box家族基因可能与小麦的杂种优势形成具有重要关系。对杂种和亲本基因表达差异与杂种优势的关系进行了分析和讨论  相似文献   

11.
Using differential display analysis, we assessed the patterns of differential gene expression in hybrids relative to their parents in a diallel cross involving 8 elite rice lines. The analysis revealed several patterns of differential expression including: (1) bands present in one parent and F1 but absent in the other parent, (2) bands observed in both parents but not in the F1, (3) bands occurring in only one parent but not in the F1 or the other parent, and, (4) bands detected only in the F1 but in neither of the parents. Relationships between differential gene expression and heterosis and marker heterozygosity were evaluated using data for RFLPs, SSRs and a number of agronomic characters. The analysis showed that there was very little correlation between patterns of differential expression and the F1 means for all six agronomic traits. Differentially expressed fragments that occurred only in one parent but not in the other parent or in F1 in each of the respective crosses were positively correlated with heterosis and heterozygosity. And conversely, fragments that were detected in F1s but in neither of the respective parents were negatively correlated with heterosis and heterozygosity. The remaining patterns of differential expression were not correlated with heterosis or heterozygosity. The relationships between the patterns of differential expression and heterosis observed in this study were not consistent with expectations based on dominance or overdominance hypotheses.  相似文献   

12.
崔辉梅  曹家树  张明龙  姚祥坦  向殉 《遗传》2005,27(2):255-261
以甘蓝型油菜(Brassica napus L, AACC,2n=38)Ogura细胞质雄性不育材料为母本,以不同白菜(B campestris ssp. chinensis Makino, AA, 2n=20) 自交系‘新选一号’和‘矮脚黄’为父本进行杂交,获得了杂种F1、BC1、BC2代。利用cDNA-AFLP技术对两种材料的不同回交世代BC1、BC2代与其亲本在蕾期的基因表达进行分析。结果表明,两种白菜回交世代与其亲本的基因表达有明显差异,在质和量上都存在差异。基因表达模式有5类共7种:(1)单亲沉默型(2种),(2)单亲一致型(2种),(3)双亲共沉默型,(4)杂种特异型,(5)表达一致型。随着回交世代的增加,回交杂种和亲本的基因表达在单亲沉默型、双亲共沉默型呈增加趋势。而在母本一致型、父本一致型、杂交种特异型、表达一致型呈下降的趋势。两种白菜在F1、BC1、BC2 3个世代与回交亲本花蕾间的基因差异表达有15种类型,其中以在轮回亲本、F1、BC1、BC2中共同出现表达的带的比例最高。Abstract: Crosses between female parent of Ogura male sterility Brassica napus L. and male parents of B. campestris ssp. chinensis Makino were made and F1, BC1 and BC2 generations produced. Gene expression of two Chinese cabbage backcross hybrid BC1, BC2 and their parents at bud stage was analyzed by means of cDNA-AFLP technique. The results indicated that the patterns of gene expression differ significantly between BC1 and BC2 generations and their parents. There were many patterns of gene expression, including gene overexpression and gene silencing. Five patterns (seven kinds) of gene expression were observed, which include: (1) bands occurring in only one parent (two kinds); (2) bands observed in hybrids and one parent (two kinds); (3) bands occurring in only parents (one kind); (4) bands visualized in only hybrids (one kind); (5) bands observed in parents and hybrids (one kind). In accompany with the addition of backcross, the increase trend in backcross hybrids and their parents were described in the aspects of differential gene expression, bands expressed only in one parent and bands expressed only in both parents. The declined trend in backcross hybrids and their parents were observed in the aspects of bands expressed in both hybrids and one parent (two kinds), bands visualized in only hybrids and bands observed in parents and hybrid. Fifteen patterns of gene expression were observed in F1、BC1、BC2 and backcross parents. The percent of bands expressed in F1、BC1、BC2 and backcross was highest.  相似文献   

13.
Sun D  Wang D  Zhang Y  Yu Y  Xu G  Li J 《Animal genetics》2005,36(3):210-215
Differential display of mRNA was used to analyse the differences of gene expression in liver between chicken hybrids and their parents in a 4 x 4 diallel crosses in order to study the molecular basis of heterosis in chickens. The results indicated that patterns of gene expression in hybrids differ significantly from their parents. Four patterns of differential gene expression were revealed, which included: (i) bands only detected in the hybrid F1s (UNF1); (ii) bands only absent in the hybrid F1s (ABF1); (iii) bands only detected in the parental P1 or P2 lines (UNP1 and UNP2) and (iv) bands absent in the parental P1 or P2 lines (ABP1 and ABP2). In addition, correlations between patterns of gene expression and heterosis percentages of nine carcass traits of 8-week-old chickens were evaluated. Statistical results showed that negative correlations between heterosis percentages and the percentage of F1-specific bands (UNF1) were significant at P < 0.01 for breast muscle yield, leg muscle yield, wing weight, eviscerated weight and eviscerated weight with giblet of 8-week-old chickens, and at P < 0.05 for intermuscular fat width. Heterosis percentage was negatively correlated with ABP (bands present in the hybrid F1s and one parental line but absent in the other parental line, ABP1 and ABP2) for breast muscle yield, leg muscle yield, wing weight, eviscerated weight and eviscerated weight with giblet of 8-week-old chickens (P < 0.01). Bands detected only in the hybrid F1s but not in either of the parental lines (UNF1) and bands absent in parental P1 or P2 lines (which includes ABP1 and ABP2) may play important roles in chicken heterosis.  相似文献   

14.
Stupar RM  Springer NM 《Genetics》2006,173(4):2199-2210
Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.  相似文献   

15.
16.
The phenomenon of heterosis describes the increased agronomic performance of heterozygous F(1) plants compared to their homozygous parental inbred plants. Heterosis is manifested during the early stages of root development in maize. The goal of this study was to identify nonadditive gene expression in primary roots of maize hybrids compared to the average expression levels of their parental inbred lines. To achieve this goal a two-step strategy was used. First, a microarray preselection of nonadditively expressed candidate genes was performed. Subsequently, gene expression levels in a subset of genes were determined via high-throughput quantitative real-time (qRT)-PCR experiments. Initial microarray experiments identified 1941 distinct microarray features that displayed nonadditive gene expression in at least 1 of the 12 analyzed hybrids compared to the midparent value of their parental inbred lines. Most nonadditively expressed genes were expressed between the parental values (>89%). Comparison of these 1941 genes with nonadditively expressed genes identified in maize shoot apical meristems via the same experimental procedure in the same genotypes revealed significantly less overlap than expected by pure chance. This finding suggests organ-specific patterns of nonadditively expressed genes. qRT-PCR analyses of 64 of the 1941 genes in four different hybrids revealed conserved patterns of nonadditively expressed genes in different hybrids. Subsequently, 22 of the 64 genes that displayed nonadditive expression in all four hybrids were analyzed in 12 hybrids that were generated from four inbred lines. Among those genes a superoxide dismutase 2 was expressed significantly above the midparent value in all 12 hybrids and might thus play a protective role in heterosis-related antioxidative defense in the primary root of maize hybrids. The findings of this study are consistent with the hypothesis that both global expression trends and the consistent differential expression of specific genes contribute to the organ-specific manifestation of heterosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号