首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydropyrimidine dehydrogenase (DPD) plays a pivotal role in the metabolism of 5-fluorouracil (5FU). In patients treated with capecitabine or 5FU combined with other chemotherapeutic drugs, DPD activity in peripheral blood mononuclear cells was increased in patients experiencing grade I/II neutropenia. In contrast, decreased DPD activity proved to be associated with grade I/II dermatological toxicity, including hand-foot syndrome. Thus, patients with a low-normal or high-normal DPD activity proved to be at risk of developing mild toxicity upon treatment with 5FU-based chemotherapy, demonstrating the important role of DPD in the etiology of toxicity associated with 5FU and the catabolites of 5FU.  相似文献   

2.
3.
Even though 5-fluorouracil (FU) is one of the oldest anticancer drugs, its use in cancer chemotherapy continues to increase. Fluorouracil is a pro-drug that requires intracellular activation to exert its effects. This makes it difficult to associate blood drug concentration with cell toxicity directly, although data from the literature show the existence of such a relationship. The relationship between FU pharmacokinetics and patient response has been explored extensively and reports attest a link between systemic drug exposure and response and survival. This has led to the concept of maximal tolerated exposure, and strategies to achieve this rely on pharmacokinetic follow-up and individual dose adjustment. More than 80% of the administered FU dose is eliminated by catabolism through dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme. Dihydropyrimidine dehydrogenase activity is found in most tissues but is highest in the liver. Peripheral blood mononuclear cells (PBMC) are used to monitor clinically DPD activity. A significant, but weak correlation between PBMC and liver DPD activity has been observed. The relationship between PBMC-DPD activity and FU systemic clearance is weak (r2=0.10); thus, simply determining PBMC-DPD is not sufficient to predict accurately FU clearance. Population pharmacokinetic analysis identified patient co-variables that influence FU clearance; drug kinetics is significantly reduced by increased age, high serum alkaline phosphatase, length of drug infusion, and low PBMC-DPD. Autoregulation of FU metabolism also is suggested; inhibition of DPD activity was observed after FU administration in both colorectal cancer patients and an animal model. Circadian rhythmicity in DPD activity is suggested from both human and animal investigations. In patients receiving protracted low dose 5-FU infusion, the circadian rhythm in FU plasma concentration peaks at 11:00h and is lowest at 23:00h, on average. The inverse relationship observed between the circadian profile of FU plasma concentration and PBMC-DP activity in these same patients suggests a link between DPD activity and FU pharmacokinetics. The impact of the biological time of drug administration was also studied with short venous infusions; clearance was 70% greater at 13:00h than at 01:00h. Similarly, peak drug concentration occurred in the first half of the night in patients receiving constant rate 5-FU infusion for 2-5 d. Several studies describe wide interindividual variation in the timing of the peak and trough of the 24h rhythm in DPD activity. The rational for FU chronomodulated therapy has been the circadian rhythm in host drug tolerance, which is greatest during the night time when the proliferation of normal target tissue is least. A randomized study of chronomodulated FU therapy with maximal delivery rate at 04:00h was shown clearly to be significantly more effective and less toxic than control flat FU therapy. Future research must focus on easy-to-obtain markers of specific rhythms to individualize the chronomodulated FU delivery.  相似文献   

4.
Even though 5-fluorouracil (FU) is one of the oldest anticancer drugs, its use in cancer chemotherapy continues to increase. Fluorouracil is a pro-drug that requires intracellular activation to exert its effects. This makes it difficult to associate blood drug concentration with cell toxicity directly, although data from the literature show the existence of such a relationship. The relationship between FU pharmacokinetics and patient response has been explored extensively and reports attest a link between systemic drug exposure and response and survival. This has led to the concept of maximal tolerated exposure, and strategies to achieve this rely on pharmacokinetic follow-up and individual dose adjustment. More than 80% of the administered FU dose is eliminated by catabolism through dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme. Dihydropyrimidine dehydrogenase activity is found in most tissues but is highest in the liver. Peripheral blood mononuclear cells (PBMC) are used to monitor clinically DPD activity. A significant, but weak correlation between PBMC and liver DPD activity has been observed. The relationship between PBMC–DPD activity and FU systemic clearance is weak (r2=0.10); thus, simply determining PBMC–DPD is not sufficient to predict accurately FU clearance. Population pharmacokinetic analysis identified patient co-variables that influence FU clearance; drug kinetics is significantly reduced by increased age, high serum alkaline phosphatase, length of drug infusion, and low PBMC–DPD. Autoregulation of FU metabolism also is suggested; inhibition of DPD activity was observed after FU administration in both colorectal cancer patients and an animal model. Circadian rhythmicity in DPD activity is suggested from both human and animal investigations. In patients receiving protracted low dose 5-FU infusion, the circadian rhythm in FU plasma concentration peaks at 11:00h and is lowest at 23:00h, on average. The inverse relationship observed between the circadian profile of FU plasma concentration and PBMC–DP activity in these same patients suggests a link between DPD activity and FU pharmacokinetics. The impact of the biological time of drug administration was also studied with short venous infusions; clearance was 70% greater at 13:00h than at 01:00h. Similarly, peak drug concentration occurred in the first half of the night in patients receiving constant rate 5-FU infusion for 2–5 d. Several studies describe wide interindividual variation in the timing of the peak and trough of the 24h rhythm in DPD activity. The rational for FU chronomodulated therapy has been the circadian rhythm in host drug tolerance, which is greatest during the night time when the proliferation of normal target tissue is least. A randomized study of chronomodulated FU therapy with maximal delivery rate at 04:00h was shown clearly to be significantly more effective and less toxic than control flat FU therapy. Future research must focus on easy-to-obtain markers of specific rhythms to individualize the chronomodulated FU delivery.  相似文献   

5.
5‐Fluorouracil (5FU) remains one of the most frequently prescribed chemotherapeutic drugs for the treatment of cancer. Recently, the pivotal role of the catabolic pathway of 5FU in the determination of toxicity towards 5FU has been highlighted. Patients with a (partial) dihydropyrimidine dehydrogenase deficiency proved to be at risk of developing severe toxicity after the administration of 5FU. A partial dihydropyrimidinase deficiency proved to be a novel pharmacogenetic disorder associated with severe 5FU toxicity.  相似文献   

6.
Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21–23 was observed. In five patients a deep intronic mutation c.1129–5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129–5967 to c.1129–5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129–5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959–51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129–5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129–5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing.  相似文献   

7.
5-Fluorouracil (5FU) and capecitabine are two of the most frequently prescribed chemotherapeutic drugs for the treatment of patients with cancer. Administration of test doses of 5FU to eight patients heterozygous for the IVS14+1G > A mutation and five control patients showed that the AUC and clearance were weak parameters with respect to the identification of patients with a DPD deficiency. However, highly significant differences were observed for the terminal half life of 5FU between DPD patients and controls. Thus, a DPD deficiency could be predicted from 5FU blood concentrations measured after the administration of a test dose of 5FU.  相似文献   

8.
Pyrimidine degradation defects and severe 5-fluorouracil toxicity   总被引:1,自引:0,他引:1  
5-Fluorouracil (5FU) remains one of the most frequently prescribed chemotherapeutic drugs for the treatment of cancer. Recently, the pivotal role of the catabolic pathway of 5FU in the determination of toxicity towards 5FU has been highlighted. Patients with a (partial) dihydropyrimidine dehydrogenase deficiency proved to be at risk of developing severe toxicity after the administration of 5FU. A partial dihydropyrimidinase deficiency proved to be a novel pharmacogenetic disorder associated with severe 5FU toxicity.  相似文献   

9.
10.
The anticancer drug 5-fluorouracil (5FU) undergoes extensive biotransformation to 5-dihydrofluorouracil (5FUH2) by the enzyme dihydropyrimidine deshydrogenase (DPD). A new HPLC method with direct UV detection for the determination of 5FUH2 in peripheral lymphocytes has been developed to detect DPD deficiency in patients treated with 5FU-based therapy. The method has been shown to be valid over the 5FUH2 concentration range of 1.14–37.88 nmol/ml. Optimal enzymatic conditions for DPD activity measurement were studied: incubation time, protein and 5FU concentrations. The assay was successfully cross-validated with the existing method using HPLC with radiochemical detection.  相似文献   

11.
The cytotoxic effect of 5-fluorouracil (5-FU) is mediated by the inhibition of thymidylate synthase (TS), however, at the same time 5-FU is catabolized by dihydropyrimidine dehydrogenase (DPD). Efficacy of 5-FU may therefore depend on the TS and DPD activity and on pharmacogenetic factors influencing these enzymes. Our aims were (1) to determine the distribution of DPD activity, the frequency of DPD deficiency and the DPD (IVS14+1G>A) mutation in the peripheral blood mononuclear cells of colorectal cancer (CRC) patients, and study the relationship between DPD deficiency and toxicity of 5-FU; (2) to investigate the influence of TS polymorphisms and DPD activity on the survival of CRC patients receiving 5-FU-based adjuvant therapy. The frequency of DPD deficiency was determined by radiochemical methods in the peripheral blood mononuclear cells (PBMCs) of 764 CRC patients treated with 5-FU. The relationship between the TS polymorphisms, DPD activity and the disease-free and overall survival was studied in 166 CRC patients receiving 5-FU-based adjuvant therapy. TS polymorphisms were determined in the DNA samples separated from the PBMCs, by PCR-PAGE and PCR-RFLP-PAGE (restriction fragment length polymorphism) methods. Low DPD values (<10 pmol/min/106 PBMCs) were demonstrated in 160/764 patients (20.9%), and of those DPD deficiency (<5 pmol/min/106 PBMCs) was verified in 38 patients (4.9%). In the latter group severe (>Gr 3) toxicity was found in 87%. The prevalence of the DPD IVS14+1G>A mutation among the 38 DPD-deficient patients was 7.8% (3/38) and was accompanied by severe Gr 4 toxic symptoms (neutropenia, mucositis, diarrhea). TS polymorphisms showed a relationship with the survival of CRC patients. It is important to mention that by combining the 3-3 genotypes of 5'-TSER and 3'-TSUTR polymorphisms the obtained 8 genotype combinations showed significantly different Kaplan-Meier survival curves. The evaluation of these curves with Cox regression analysis resulted in two prognostically different groups: "A" good prognosis (RR<1) and "B" bad prognosis (RR>1). The disease-free- and overall survival of these two groups were significantly different. DPD activity also showed correlation with the survival; patients with DPD activity <10 pmol/min/106 PBMCs showed significantly longer disease-free and overall survival. The determination of DPD activity proved to be a more valuable parameter in the evaluation of serious 5-FU-related toxicity compared to the IVS14+1G>A mutation analysis. According to the Cox multivariate analysis the combination of germline TS polymorphisms and DPD activity is/an independent prognostic marker of survival in CRC patients treated with adjuvant 5-FU therapy.  相似文献   

12.
Focusing our effort on the importance of FUra scheduling we have tested the hypothesis that pulse and continuous infusion (CI) of the fluoropyrimidine have different mechanisms of cytotoxicity. Our initial approach was to compare the mechanism of resistance of a cell line resistant to a short term exposure to FUra (HCT-8/FU4hR) to that of a cell line resistant to a prolonged exposure to the fluoropyrimidine (HCT-8/FU7dR). Cytotoxicity studies showed that HCT-8/FU4hR cells were still sensitive to FUra given as a 7-d exposure, suggesting different mechanisms of resistance. Indeed, rapid recovery of TS activity after drug removal was evident in the HTC-8/FU7dR cell line while HCT-8/FU4hR cells were similar to the parental cell line with regard to both the degree of in situ TS inhibition by FUra and duration of inhibition after FUra removal. In contrast, labelling studies with [3H-6] FUra (4 h exposure, 100 M) showed that the incorporation of the fluoropyrimidine into RNA is significantly decreased in HCT-8/FU4hR cells as compared to parental HCT-8 cells.Given the lack of cross resistance between the two schedulesin vitro, a pilot trial was done on patients with colorectal cancer refractory to bolus FUra. On 15 patients failing after FUra+LV or FUra alone 1 PR, 3 MR, 3 SD and 8 P were observed, confirmng a certain degree of activity of CI FUra in patients clinically resistant to bolus FUra.Based on this rationale, a phase II trial of schedule-oriented biochemical modulation of FUra in advanced colorectal cancer patients was conducted, employing a hybrid regimen of 2 biweekly cycles of FUra bolus (600 mg/sqm), preceeded by (24 h interval) methotrexate, 200 mg/sqm (in order to maximize the RNA effect of the drug) alternating with FUra continuous infusion, 200 mg/sqm daily for 3 weeks, modulated by leucovorin, 20 mg/sqm weekly bolus (in order to maximize the DNA effect).Thirty-three consecutive patients (median ECOG PS 1) with advanced measurable colorectal cancer and no prior therapy for metastatic disease entered the study, from February 1992 to August 1993. Three complete and 13 partial responses were obtained among these 33 patients (RR=48%, 95% confidence limis, 31–66%). After a median follow-up time of 23 months, 16 patients are still alive. The median progression free survival and overall survival were 9.6 and 20.8 months, respectively. No toxic deaths or grade 4 toxicity occurred. The incidence of grade 3 toxicity per patient in any cycle was: mucositis 6%, diarrhea 3% and vomiting 3% for the bolus part and 21%, 3% and 6% respectively, for the continuous infusion part of the regimen. Hand-foot syndrome occurred in 27% of the patients treated with the continuous infusion regimen.In conclusion, this experimental and clinical project has generated a novel regimen of schedule oriented biochemical modulation that is twice as active and half as toxic compared to bolus FU+LV given with either the daily x 5 or the weekly schedule. This high clinical activity is very encouraging, especially considering that 1) consecutive patients were entered, 2) the responses were independently reviewed, 3) the progression free survival and survival were much longer than those actually reported for this disease, 4) the toxicity of the program, in particular the bolus regimen, was relatively low allowing further intensification.  相似文献   

13.
5-Fluorouracil (5FU) and capecitabine are two of the most frequently prescribed chemotherapeutic drugs for the treatment of patients with cancer. Administration of test doses of 5FU to eight patients heterozygous for the IVS14+1G > A mutation and five control patients showed that the AUC and clearance were weak parameters with respect to the identification of patients with a DPD deficiency. However, highly significant differences were observed for the terminal half life of 5FU between DPD patients and controls. Thus, a DPD deficiency could be predicted from 5FU blood concentrations measured after the administration of a test dose of 5FU.  相似文献   

14.
Dihydropyrimidine dehydrogenase (DPD) catalyzes the reduction of the naturally occurring pyrimidines, uracil and thymine, and the fluoropyrimidine anticancer drug, 5-fluorouracil (FUra) to 5,6-dihydropyrimidines. Previous studies have demonstrated that cancer patients who are DPD deficient exhibit severe toxicity (including death) following treatment with FUra. To date, the direct measurement of DPD enzyme activity has been the only reliable method to identify DPD deficient cancer patients. We now report a semi-automated radioassay for measuring DPD activity in human peripheral lymphocytes. Following incubation of lymphocyte cytosol (at a fixed protein concentration of 200 μg) with [6-14C]FUra at timepoints ranging from 0 to 30 min, samples are ethanol precipitated, filtered and analyzed by HPLC. Determination of radioactivity is accomplished using an in-line flow scintillation analyzer with automatic quantitation of peaks. This method provides the first specific assay for DPD enzyme activity which is rapid, reproducible and sensitive enough to be used in the routine screening of cancer patients for DPD deficiency prior to treatment with FUra.  相似文献   

15.
Dihydropyrimidine dehydrogenase (DPD) is a rate‐limiting enzyme of 5‐fluorouracil (5‐FU) catabolism. Glutathione (GSH) is a tripeptide involved in platinum complex detoxification. This study explored the circadian rhythms of DPD activity and GSH concentration in the peripheral blood of 16 patients with histologically proven nasopharyngeal carcinoma (NPC) in order to guide the establishment of chronotherapeutic schedules for this cancer. DPD activity and GSH concentration were determined by high performance liquid chromatography (HPLC). Both variables displayed significant circadian rhythms (Cosinor analysis: p=0.009 and 0.012, respectively). Peak DPD activity occurred at about 02:30 h; whereas, peak GSH concentration occurred around 12:40 h. The differences between the peak and nadir mean values were 25.5% and 38.7%, respectively. The study showed that the circadian rhythms in DPD activity and GSH concentration in Chinese NPC are similar to those reported for western patients with colorectal cancer, despite the differences in race and kinds of cancer. These findings imply that the chronotherapeutic schedule of 5‐FU and platinum used to treat European colorectal cancer patients probably is applicable to Chinese NPC patients.  相似文献   

16.
17.
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil and thymine, as well as of the widely used chemotherapeutic drug 5-fluorouracil (5FU). Analysis of the DPD gene ( DPYD ) in two patients presenting with complete DPD deficiency and the parents of an affected child showed the presence of three novel mutations, including one splice site mutation IVS11 + 1G-->T and the missense mutations 731A-->C (E244V) and 1651G-->A (A551T). The G-->T mutation in the invariant GT splice donor site flanking exon 11 (IVS11 + 1G-->T) created a cryptic splice site within exon 11. As a consequence, a 141-bp fragment encoding the aminoacid residues 400-446 of the primary sequence of the DPD protein was missing in the mature DPD mRNA. Analysis of the crystal structure of pig DPD suggested that the E244V mutation might interfere with the electron flow between NADPH and the pyrimidine binding site of DPD. The A551T point mutation might prevent binding of the prosthetic group FMN and affect folding of the DPD protein. The identification of these novel mutations in DPYD will allow the identification of patients with an increased risk of developing severe 5FU-associated toxicity.  相似文献   

18.
19.
Dihydropyrimidine dehydrogenase (DPD) deficiency (McKusick 274270) is an autosomal recessive disease characterized by thymine-uraciluria in homozygous-deficient patients and associated with a variable clinical phenotype. Cancer patients with this defect should not be treated with the usual dose of 5-fluorouracil because of the expected lethal toxicity. In addition, heterozygosity for mutations in the DPD gene increases the risk of toxicity in cancer patients treated with this drug. Sequence analysis in a patient with complete DPD deficiency, previously shown to be heterozygous for the ΔC1897 frameshift mutation, revealed the presence of a novel missense mutation, R235W. Expression of this novel mutation and previously identified missense mutations C29R and R886H in Escherichia coli showed that both C29R and R235W lead to a mutant DPD protein without significant residual enzymatic activity. The R886H mutation, however, resulted in about 25% residual enzymatic activity and is unlikely to be responsible for the DPD-deficient phenotype. We show that the E. coli expression system is a valuable tool for examining DPD enzymatic variants. In addition, two new patients who were both heterozygous for the C29R mutation and the common splice donor site mutation were identified. Only one of these patients showed convulsive disorders during childhood, whereas the other showed no clinical phenotype, further illustrating the lack of correlation between genotype and phenotype in DPD deficiency. Received: 20 June 1997 / Accepted: 26 August 1997  相似文献   

20.
5‐Fluorouracil (5‐FU) has been widely used as a chemotherapy agent in the treatment of many types of solid tumors. Investigation of its antimetabolites led to the development of an entire class of fluorinated pyrimidines. However, the toxicity profile associated with 5‐FU is significant and includes diarrhea, mucositis, hand–foot syndrome and myelosuppression. In aiming at reducing of the side effects of 5‐FU, we have designed and synthesized delocalized lipophilic cations (DLCs) as a vehicle for the delivery of 5‐FU. DLCs accumulate selectively in the mitochondria of cancer cells because of the high mitochondrial transmembrane potential (ΔΨm). Many DLCs exhibited anti‐cancer efficacy and were explored as potential anti‐cancer drugs based on their selective accumulation in the mitochondria of cancer cells. F16, the DLC we used as a vehicle, is a small molecule that selectively inhibits tumor cell growth and dissipates mitochondrial membrane potential. The binding of the conjugate F16–5‐FU to bovine serum albumin (BSA) was investigated using spectroscopic and molecular modeling approaches. Fluorescence quenching constants were determined using the Stern–Volmer equation to provide a measure of the binding affinity between F16–5‐FU and BSA. The activation energy of the interaction between F16–5‐FU and BSA was calculated and the unusually high value was discussed in terms of the special structural block indicated by the molecular modeling approach. Molecular modeling showed that F16–5‐FU binds to human serum albumin in site II, which is consistent with the results of site‐competitive replacement experiments. It is suggested that hydrophobic and polar forces played important roles in the binding reaction, in accordance with the results of thermodynamic experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号