首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
拟南芥LEAFY基因在花发育中的网络调控及其生物学功能   总被引:15,自引:0,他引:15  
王利琳  梁海曼  庞基良  朱睦元 《遗传》2004,26(1):137-142
重点综述了拟南芥花分生组织特征基因——LEAFY(LFY)基因及其同源基因在花发育中的网络调控及其生物学功能。LFY基因广泛表达于高等植物的营养性和生殖性组织。LFY基因需要与其他基因相互作用,並且表达量达到一定水平时才能促进成花。LFY基因处于成花调控网络的关键位置,不仅调控开花时间和花转变,而且在花序和花的发育中也起重要作用。碳源、植物激素等因子直接或间接地影响LFY基因的表达和作用。提示通过掌握LFY基因的表达调控规律进一步探讨成花机理的可行性。 Abstract:Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper.LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants,therefore investigation on role of LFY gene on flowering is of general significance.LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL,EMF,AP1,AP2,CAL,FWA,FT,AP3,PI,AG,UFO,CO,LD,GA1 etc,and a critical level of LFY expression is essential.LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development.It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes.Some physiological factors,such as carbon sources,phytohormones,affect directly or indirectly the expression and actions of LFY gene.This indicates that level of LFY expression can also be regulated with physiological methods.It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene.  相似文献   

2.
植物成花转变基因的研究现状   总被引:2,自引:0,他引:2  
介绍了拟南芥中与开花相关的一系列控制成花的基因,包括花分生组织特异性基因和COPS基因,这些基因相互作用,通过成花抑制路径、自发促进路径、光周期促进路径和春化促进路径来调节植物的成花转变。  相似文献   

3.
高等植物成花分子机理研究现状及展望   总被引:13,自引:2,他引:11  
以拟南芥、金鱼草为例,介绍了近几年植物成花(包括成花诱导、花序分生组织的组成、花发端、花器官发生及发育)研究的一些进展,着重介绍了成花过程中基因的表达,调控与生理功能。  相似文献   

4.
植物成花调控的分子遗传学   总被引:2,自引:0,他引:2  
对以拟南芥为主要对象进行的有关成花调控分子遗传学研究作了综述。该领域的研究已明确了对成花的调控没有单一的“成花万能基因”,而是有一群“成花时期基因”,并大致弄清了这些基因调控成花的模式。其结果是,成花调控途径具有多重性和冗长性,这些成花调控基因的参与量、基因之间的平衡都对成花起着重要的作用。  相似文献   

5.
Yu Q  Moore PH  Albert HH  Roader AH  Ming R 《Cell research》2005,15(8):576-584
The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regulate the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.  相似文献   

6.
Wheat(Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein(SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes(TaSPL genes) were isolated from wheat((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups(G1–G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5(TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions.On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development.This study provides a significant beginning of functional analysis of SBP-box genes in wheat.  相似文献   

7.
8.
植物成花转变是营养生长向生殖生长转变的过程,木本果树过长的童期严重制约了育种的进程。相对于模式植物,目前对果树成花转变与调控的研究相对较少。因此,了解并掌握果树成花转变的途径及调控方法,对于缩短果树童期、调控开花,加速果树育种具有重要意义。基于近年来国内外相关研究,本文系统总结了果树的成花途径,阐述了果树栽培措施、植物生长调节剂等成花调控方法,以及果树中成花调控的相关基因及网络机制。最后,本文还对以修饰组学为主的多组学以及嫁接和植物生长调节剂在果树成花调控中的研究前景进行了展望。  相似文献   

9.
植物防御系统中抗病相关基因的研究进展   总被引:1,自引:0,他引:1  
万里红  周奕华  陈正华 《遗传》2002,24(4):486-492
本文论述了植物防御系统中抗病相关基因(resistance gene,R基因)的研究进展。列表总结了迄今已克隆的R基因,并将其归为四种不同的类型。综述了不同基因表达产物-R蛋白在细胞中的定位及其相应的功能。此外,还对R基因编码区的多态性、R基因在染色体上排列方式以及R基因的进化与起源等问题进行了讨论。 Abstract:This review comments on recent advances in research of disease resistance genes(R Genes) in defence system of plants.The R genes cloned up to date are summarized and classified roughly into four classes listed in the Table 1.The location and the founction of the R proteins,i.e.,the expressed products of different R genes in the cells are reviewed.In addition,the polymophism of coding region of R genes,the different fashions of R gene arrangement on the chromosomes,and the evolution and origin of R genes are discussed.  相似文献   

10.
水稻花发育的分子生物学研究进展   总被引:8,自引:0,他引:8  
罗琼  朱立煌 《遗传》2002,24(1):87-93
水稻是世界上最重要的粮食作为之一,也是单子叶植物发育生物学研究较理想的模式植物。水稻花器官还是粮食赖以形成的基础。对水稻花发育的研究已开始成为植物分子遗传学的一个新的焦点。近年来有关水稻花发育基因调控的研究已取得了长足的进展,本文从水稻花的诱导、花分生组织的形成和花器官的发育三个方面综述近年来国内外的研究进展。 Abstract:Rice (Oryza sativa L.) is not only one of the most important food crops in the world,but also a model plant for study of molecular developmental biology in monocots.In addition,the rice floral organs provide the basis for grain formation.Study of rice floral development has become a new focus of plant molecular genetics.Recently,notable progress has been made in study of gene regulation in rice floral development.In the review,genetic and molecular mechanisms of floral induction,floral meristem formation,and floral organ development in rice are summarized.  相似文献   

11.
12.
LEAFY同源基因研究进展   总被引:3,自引:0,他引:3  
LEAFY(LFY)同源基因存在于所有的陆生植物中,在植物花发育早期表达,并在花发育过程中抑制茎端分生组织的营养生长,调控花分生组织和花器官的形成,使转LFY基因植株提前开花,LFY同源基因与其上下游基因共同调控花发育过程.LFY同源基因的蛋白质结构在不同物种间保守性很高,但它们的表达部位差异很大.该文总结了近年来国内外已经克隆到的LFY同源基因的表达、功能及其在果树、花卉、粮食作物上的应用,以期为植物花发育的深入研究提供参考.  相似文献   

13.
14.
15.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

16.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

17.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

18.
Carl N. McDaniel 《Planta》1980,148(5):462-467
The terminal, apical shoot meristem ofN. tabacum cv. Wisconsin 38 normally differentiates into a flower after producing 30 to 40 nodes. The influence of leaves and roots on the regulation of flowering was evaluated by counting the number of nodes produced after removal of leaves or the induction of adventitious roots. Leaf removal has no effect on the number of nodes produced before flower formation. Root induction significantly increases the number of nodes produced before flower formation. The plant behaves as if it were measuring the number of nodes between the meristem and the roots as a means of regulating meristem conversion from vegetative to floral differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号