首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bacteriorhodopsin (bR) is solubilized efficiently as a monomer by a novel surfactant, a tripod amphiphile (TPA), which permits the formation of purple hexagonal bR crystals under several conditions. The crystals, although small, diffract to 2.5 A resolution using synchrotron radiation. TPA may be useful for the solubilization, purification, and crystallization of other membrane proteins.  相似文献   

2.
The structural study of membrane proteins requires detergents that can effectively mimic lipid bilayers, and the choice of detergent is often a compromise between detergents that promote protein stability and detergents that form small micelles. We describe lipopeptide detergents (LPDs), a new class of amphiphile consisting of a peptide scaffold that supports two alkyl chains, one anchored to each end of an alpha-helix. The goal was to design a molecule that could self-assemble into a cylindrical micelle with a rigid outer hydrophilic shell surrounding an inner lipidic core. Consistent with this design, LPDs self-assemble into small micelles, can disperse phospholipid membranes, and are gentle, nondenaturing detergents that preserve the structure of the membrane proteins in solution for extended periods of time. The LPD design allows for a membrane-like packing of the alkyl chains in the core of the molecular assemblies, possibly explaining their superior properties relative to traditional detergents in stabilizing membrane protein structures.  相似文献   

3.
Bacteriorhodopsin (BR) essentially free of native lipids has been prepared in a highly stable state. Purple membrane was solubilized in Triton X-100 and BR was purified by size exclusion chromatography using 3-[cholamidopropyl)dimethylammonio]-2-hydroxyl-1-propanesulfonic acid (CHAPSO) detergent at pH 5. Molar ratios of phospholipid/BR ranged from 0.4 to 0.05 corresponding to 94-98% phospholipid removal. Purified BR has an absorbance ratio (A280nm/A548nm) of 1.5-1.6 in the dark-adapted state which is the highest purified BR/protein ratio reported to date. The purified BR in CHAPSO shows maximum stability in the pH range 5.0-5.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of native purple membrane and solubilized BR from most Halobacterium halobium JW-3 cultures show 3 higher molecular weight bands in addition to BR. Immunological staining and amino acid sequencing indicates that these additional proteins are partially processed forms of the BR precursor protein. The BR preprotein contains 13 additional amino acids on the NH2 terminus which are removed by post-translational processing in at least four steps. Isoelectric focusing separated most delipidated and non-delipidated BR samples into 8 bands. Incomplete BR post-translational processing BR is thought to be largely responsible for the multiplicity of isoelectric BR species. The principal components have pI values of 5.20 and 5.24 and both have absorption maxima at 550 nm, characteristic of detergent-solubilized BR. BR in Triton X-100 or nonylglucoside, delipidated BR in CHAPSO, and BR in intact purple membrane all have a dark-adapted ratio of 13-cis to all-trans-retinal of 1.9:1.  相似文献   

4.
The membrane protein bacteriorhodopsin (BR) can be kept soluble in its native state for months in the absence of detergent by amphipol (APol) A8-35, an amphiphilic polymer. After an actinic flash, A8-35-complexed BR undergoes a complete photocycle, with kinetics intermediate between that in detergent solution and that in its native membrane. BR/APol complexes form well defined, globular particles comprising a monomer of BR, a complete set of purple membrane lipids, and, in a peripheral distribution, ∼2 g APol/g BR, arranged in a compact layer. In the absence of free APol, BR/APol particles can autoassociate into small or large ordered fibrils.  相似文献   

5.
We have identified a human Rho protein, RhoE, which has unusual structural and biochemical properties that suggest a novel mechanism of regulation. Within a region that is highly conserved among small GTPases, RhoE contains amino acid differences specifically at three positions that confer oncogenicity to Ras (12, 59, and 61). As predicted by these substitutions, which impair GTP hydrolysis in Ras, RhoE binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins. Replacing all three positions in RhoE with conventional amino acids completely restores GTPase activity. In vivo, RhoE is found exclusively in the GTP-bound form, suggesting that unlike previously characterized small GTPases, RhoE may be normally maintained in an activated state. Thus, amino acid changes in Ras that are selected during tumorigenesis have evolved naturally in this Rho protein and have similar consequences for catalytic function. All previously described Rho family proteins are modified by geranylgeranylation, a lipid attachment required for proper membrane localization. In contrast, the carboxy-terminal sequence of RhoE predicts that, like Ras proteins, RhoE is normally farnesylated. Indeed, we have found that RhoE in farnesylated in vivo and that this modification is required for association with the plasma membrane and with an unidentified cellular structure that may play a role in adhesion. Thus, two unusual structural features of this novel Rho protein suggest a striking evolutionary divergence from the Rho family of GTPases.  相似文献   

6.
Phylogeny is often used to compare entire families of genes/proteins. We previously showed that classification of Caenorhabditis elegans Rho GTPases on the basis of their enzymatic properties was significantly different from sequence alignments. To further develop this concept, we have developed an integrated approach to classify C. elegans small GTPases based on functional data comprising affinity for GTP, sub‐cellular localization, tissue distribution and silencing impact. This analysis led to establish a novel functional classification for small GTPases. To test the relevance of this classification in mammals, we focused our attention on the human orthologs of small GTPases from a specific group comprising arf‐1.2, evl‐20, arl‐1, Y54E10BR.2, unc‐108 and rab‐7. We then tested their involvement in protein secretion and membrane traffic in mammalian systems. Using this approach we identify a novel network containing 18 GTPases, and 23 functionally interacting proteins, conserved between C. elegans and mammals, which is involved in membrane traffic and protein secretion.  相似文献   

7.
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.  相似文献   

8.
Membrane protein analyses have been notoriously difficult due to hydrophobicity and the general low abundance of these proteins compared to their soluble cytosolic counterparts. Shotgun proteomics has become the preferred method for analyses of membrane proteins, in particular the recent development of peptide immobilized pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two-dimensional shotgun proteomics. Recently, peptide IPG-IEF has been shown to be a valuable shotgun proteomics technique through the use of acidic narrow range IPG strips, which demonstrated that small acidic p I increments are rich in peptides. In this study, we assess the utility of both broad range (BR) (p I 3-10) and narrow range (NR) (p I 3.4-4.9) IPG strips for rat liver membrane protein analyses. Furthermore, the use of these IPG strips was evaluated using label-free quantitation to demonstrate that the identification of a subset of proteins can be improved using NR IPG strips. NR IPG strips provided 2603 protein assignments on average (with 826 integral membrane proteins (IMPs)) compared to BR IPG strips, which provided 2021 protein assignments on average (with 712 IMPs). Nonredundant protein analysis demonstrated that in total from all experiments, 4195 proteins (with 1301 IMPs) could be identified with 1428 of these proteins unique to NR IPG strips with only 636 from BR IPG strips. With the use of label-free quantitation methods, 1659 proteins were used for quantitative comparison of which 319 demonstrated statistically significant increases in normalized spectral abundance factors (NSAF) in NR IPG strips compared to 364 in BR IPG strips. In particular, a selection of six highly hydrophobic transmembrane proteins was observed to increase in NSAF using NR IPG strips. These results provide evidence for the use of alternative pH gradients in combination to improve the shotgun proteomic analysis of the membrane proteome.  相似文献   

9.
Endogenous prenylation with sesquiterpene or diterpene isoprenoids facilitates membrane localization and functional activation of small monomeric GTP-binding proteins. A direct effect of isoprenoids on regulation of gene expression and protein stability has also been proposed. In this study, we determined the role of sesquiterpene or diterpene isoprenoids on the regulation of Rho G-protein expression, activation, and stability in human trabecular meshwork (TM) cells. In both primary and transformed human TM cells, limiting endogenous isoprenoid synthesis with lovastatin, a potent HMG-CoA reductase inhibitor, elicited marked increases in RhoA and RhoB mRNA and protein content. The effect of lovastatin was dose-dependent with newly synthesized inactive protein accumulating in the cytosol. Supplementation with geranylgeranyl pyrophosphate (GGPP) prevented, while inhibition of geranylgeranyl transferase-I mimicked, the effects of lovastatin on RhoA and RhoB protein content. Similarly, lovastatin-dependent increases in RhoA and RhoB mRNA expression were mimicked by geranylgeranyl transferase-I inhibition. Interestingly, GGPP supplementation selectively promoted the degradation of newly synthesized Rho proteins which was mediated, in part, through the 20S proteasome. Functionally, GGPP supplementation prevented lovastatin-dependent decreases in actin stress fiber organization while selectively facilitating the subcellular redistribution of accumulated Rho proteins from the cytosol to the membrane and increasing RhoA activation. Post-translational prenylation with geranylgeranyl diterpenes selectively facilitates the expression, membrane translocation, functional activation, and turnover of newly synthesized Rho proteins. Geranylgeranyl prenylation represents a novel mechanism by which active Rho proteins are targeted to the 20S proteasome for degradation in human TM cells.  相似文献   

10.
In eucaryotic cells, the delivery of a secreted protein to the plasma membrane via vesicles must include transport, recognition, and fusion events. Proteins exposed on the cytoplasmic face of the secretory vesicles play a role in these events; these include the GTP-binding proteins, which are crucial components in this process. Fractions enriched with vesicles carrying glucose oxidase (GOX) activity from Fusarium oxysporum f. sp. lycopersici, a soilborne fungal pathogen causing vascular wilt on tomato plants, were obtained using two successive sucrose gradients, the first a linear-log and the second an isopycnic gradient. In this study, we used the following Fusarium strains: a wild-type and a strain carrying a Δrho1 loss-of-function mutation (presenting dramatically reduced virulence). By ADP-ribosylation with C3 exotoxin, and Western blot analysis with specific antibodies, we identified the small GTPases Rho1, Rho4, Cdc42 and Rab8, and a heterotrimeric Gα protein associated with vesicles carrying GOX activity. This was done for both strains, with the exception of Rho1, which was absent in the mutant strain; in addition, the levels of the Cdc42 protein were observed to be higher in the Δrho1 strain. These data indicate that three Rho proteins, Rho1, Rho4, and Cdc42, are present in secretory vesicles carrying GOX activity in F. oxysporum, and that Rho1 is not essential for the transport and secretion of, at least, cargo proteins carried in secretory vesicles, or Cdc42/Rho4 can fulfill its role in these events.  相似文献   

11.
Covalent modification of integral membrane proteins with amphiphiles may provide a general approach to the conversion of membrane proteins into water-soluble forms for biophysical and high-resolution structural studies. To test this approach, we mutated four surface residues of the pentameric Mycobacterium tuberculosis mechanosensitive channel of large conductance (MscL) to cysteine residues as anchors for amphiphile attachment. A series of modified ion channels with four amphiphile groups attached per channel subunit was prepared. One construct showed the highest water solubility to a concentration of up to 4mg/ml in the absence of detergent. This analog also formed native-like, alpha-helical homo-pentamers in the absence of detergent as judged by circular dichroism spectroscopy, size-exclusion chromatography and various light-scattering techniques. Proteins with longer, or shorter polymers attached, or proteins modified exclusively with polar cysteine-reactive small molecules, exhibited reduced to no solubility and higher-order aggregation. Electron microscopy revealed a homogeneous population of particles consistent with a pentameric channel. Solubilization of membrane proteins by covalent attachment of amphiphiles results in homogeneous particles that may prove useful for crystallization, solution NMR spectroscopy, and electron microscopy.  相似文献   

12.
13.
14.
The Rho proteins are identified as a subgroup of the Ras superfamily of low molecular weight GTP-binding proteins. We have studied the expression of these proteins in human cytotoxic natural killer cells and found that RhoA is the most abundantly expressed member of the Rho family. The Rho proteins are specific substrates for ADP-ribosylation catalyzed by the C3 exoenzyme from Clostridium botulinum. We report here that introduction of recombinant C3 in electropermeabilized natural killer cells or in cytotoxic T lymphocytes resulted in a dose-dependent inhibition of their cytolytic function. Furthermore, a single substrate is efficiently ADP-ribosylated by C3 in extracts from cytotoxic cells. Biochemical analyses indicate that this substrate is RhoA, and subcellular fractionation experiments demonstrate that it is essentially present in the cytosol of the cells. Western blot analysis, however, revealed that a small proportion of the Rho protein can be found associated with the cell membrane as well as with the cytotoxic granules. These results indicate that the low molecular weight GTP-binding protein RhoA is present in cytotoxic lymphocytes and plays a critical role in cell-mediated cytotoxicity.  相似文献   

15.
The mechanism whereby bacteriorhodopsin (BR), the light driven proton pump from the purple membrane of Halobacterium halobium, arranges in a 2D-hexagonal array, has been studied in bilayers containing the protein, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and various fractions of H. halobium membrane lipids, by freeze fracture electron microscopy and examination of optical diffractograms of the micrographs obtained. Electron micrographs of BR/DMPC complexes containing the entire polar lipid component of H. halobium cell membranes or the total lipid component of the purple membrane, with a protein-to-total lipid molar ratio of less than 1:50 and to which 4 M NaCl had been added, revealed that trimers of BR formed into an hexagonal 2D-array similar to that found in the native purple membrane, suggesting that one or more types of the purple membrane polar lipids are required for array formation. To support this suggestion, bacteriorhodopsin was purified free of endogenous purple membrane lipids and reconstituted into lipid bilayer complexes by detergent dialysis. The lipids used to form these complexes are 1,2-dimyristoyl-sn-glycerol-phosphocholine (DMPC) as the major lipid and, separately, each of the individual lipid types from the H. halobium cell membranes, namely 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-phosphate (DPhPGP), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-sulphate (DPhPGS), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol (DPhPG) and 2,3-di-O-phytanyl-1-O-[beta-D-Galp-3-sulphate-(1----6)-alpha-D- Manp-(1----2)-alpha-D-Glcp]-sn-glycerol (DPhGLS). When examined by freeze-fracture electron microscopy, only the complexes containing 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol- 1'-phosphate or 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol-1'-sulphate, at high protein density (less than 1:50, bacteriorhodopsin/phospholipid, molar ratio) and to which 4 M NaCl had been added, showed well defined 2D hexagonal arrays of bacteriorhodopsin trimers similar to those observed in the purple membrane of H. halobium.  相似文献   

16.
Little is known about the structural properties of semi-denatured membrane proteins. The current study employs laser-induced oxidative labeling of methionine side chains in combination with electrospray mass spectrometry and optical spectroscopy for gaining insights into the conformation of bacteriorhodopsin (BR) under partially denaturing conditions. The native protein shows extensive oxidation at M32, M68, and M163, which are located in solvent-accessible loops. In contrast, M20 (helix A), M56/60 (helix B), M118 (helix D), M145 (helix E), and M209 (helix G) are strongly protected, consistent with the known protein structure. Exposure of the protein to acidic conditions leads to a labeling pattern very similar to that of the native state. The absence of large-scale conformational changes at low pH is in agreement with recent crystallography data. Solubilization of BR in SDS induces loss of the retinal chromophore concomitant with collapse of the binding pocket, thereby precluding solvent access to the protein interior. Tryptophan fluorescence data confirm the presence of a large protein core that remains protected from water. However, oxidative labeling indicates partial unfolding of helices A and D in SDS. Irreversible thermal denaturation of the protein at 100 °C induces a labeling pattern quite similar to that seen upon SDS exposure. Labeling experiments on refolded bacterioopsin reveal a native-like structure, but with partial unfolding of helix D. Our data suggest that noncovalent contacts with the retinal chromophore in native BR play an important role for the stability of this particular helix. Overall, the present work illustrates the viability of using laser-induced oxidative labeling as a novel tool for characterizing structural changes of membrane proteins in response to alterations of their solvent environment.  相似文献   

17.
Circular dichroic (CD) spectra of three related protein pigments from Halobacterium halobium, halorhodopsin (HR), bacteriorhodopsin (BR), and sensory rhodopsin I (SR-I), are compared. In native membranes the two light-driven ion pumps, HR and BR, exhibit bilobe circular dichroism spectra characteristic of exciton splitting in the region of retinal absorption, while the phototaxis receptor, SR-I, exhibits a single positive band centered at the SR-I absorbance maximum. This indicates specific aggregation of protein monomers of HR, as previously noted [Sugiyama, Y., & Mukohata, Y. (1984) J. Biochem. (Tokyo) 96, 413-420], similar to the well-characterized retinal/retinal exciton interaction in the purple membrane. The absence of this interaction in SR-I indicates SR-I is present in the native membrane as monomers or that interactions between the retinal chromophores are weak due to chromophore orientation or separation. Solubilization of HR and BR with nondenaturing detergents eliminates the exciton coupling, and the resulting CD spectra share similar features in all spectral regions from 250 to 700 nm. Schiff-base deprotonation of both BR and HR yields positive CD bands near 410 nm and shows similar fine structure in both pigments. Removal of detergent restores the HR native spectrum. HR differs from BR in that circular dichroic bands corresponding to both amino acid and retinal environments are much more sensitive to external salt concentration and pH. A theoretical analysis of the exciton spectra of HR and BR that provides a range of interchromophore distances and orientations is performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Experiments have been performed to examine any influence of the chromophore retinal in bacteriorhodopsin (BR) on the passive proton/hydroxide ion flux through this integral membrane protein. BR was reconstituted into dimyristoylphosphatidylcholine (DMPC)-phosphatidylserine or DMPC-dimyristoylphosphatidylglycerol unilamellar vesicles with molar lipid to protein ratios ranging from 30 to 150. The entrapped fluorescence dye pyranine served as a reliable indicator of the internal proton concentration. Transmembrane pH-gradients were quickly established across the vesicular membrane and the kinetics of the induced fluorescence changes were compared for vesicles with incorporated native BR, BR bleached to the chromophore-free protein bacterioopsin, and BR regenerated from bacterioopsin with all-trans-retinal, respectively. For aggregated protein molecules, the H+/OH- diffusion across bacterioopsin was always considerably faster than that through the protein containing covalently bound retinal. The decay rate of the imposed pH-gradient was 4.4-9.1 and 2.0-5.1 times slower for native and regenerated BR, respectively, as compared to bacterioopsin. Stepwise regeneration of bacterioopsin with all-trans-retinal revealed a linear dependence of the predominant delta pH-decay time on the degree of regeneration. Essentially the same observations were made with monomeric protein molecules in vesicular lipid membranes. The results demonstrate that the chromophore retinal itself blocks the H+/OH- conducting pathway across the transmembrane protein BR or indirectly controls this path by inducing conformational changes in the protein upon binding.  相似文献   

19.
ExoS (453 amino acids) is a bi-functional type-III cytotoxin of Pseudomonas aeruginosa. Residues 96-233 comprise the Rho GTPase-activating protein (Rho GAP) domain, while residues 234-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Residues 51-72 represent a membrane localization domain (MLD), which targets ExoS to perinuclear vesicles within mammalian cells. YopE (219 amino acids) is a type-III cytotoxin of Yersinia that is also a Rho GAP. Residues 96-219 comprise the YopE Rho GAP domain. While the Rho GAP domains of ExoS and YopE share structural homology, unlike ExoS, the intracellular localization of YopE within mammalian cells has not been resolved and is the subject of this investigation. Deletion mapping showed that the N terminus of YopE was required for intracellular membrane localization of YopE in CHO cells. A fusion protein containing the N-terminal 84 amino acids of YopE localized to a punctate-perinuclear region in mammalian cells and co-localized with a fusion protein containing the MLD of ExoS. Residues 54-75 of YopE (termed YopE-MLD) were necessary and sufficient for intracellular localization in mammalian cells. The YopE-MLD localized ExoS to intracellular membranes and targeted ExoS to ADP-ribosylate small molecular weight membrane proteins as observed for native type-III delivered ExoS. These data indicate that the YopE MLD functionally complements the ExoS MLD for intracellular targeting in mammalian cells.  相似文献   

20.
Rac/Rop-type Rho-family small GTPases accumulate at the plasma membrane in the tip of pollen tubes and control the polar growth of these cells. Nt-RhoGDI2, a homolog of guanine nucleotide dissociation inhibitors (GDIs) regulating Rho signaling in animals and yeast, is co-expressed with the Rac/Rop GTPase Nt-Rac5 specifically in tobacco (Nicotiana tabacum) pollen tubes. The two proteins interact with each other in yeast two-hybrid assays, preferentially when Nt-Rac5 is prenylated. Transient over-expression of Nt-Rac5 and Nt-RhoGDI2 depolarized or inhibited tobacco pollen tube growth, respectively. Interestingly, pollen tubes over-expressing both proteins grew normally, demonstrating that the two proteins functionally interact in vivo. Nt-RhoGDI2 was localized to the pollen tube cytoplasm and effectively transferred co-over-expressed YFP-Nt-Rac5 fusion proteins from the plasma membrane to this compartment. A single amino acid exchange (R69A), which abolished binding to Nt-RhoGDI2, caused Nt-Rac5 to be mis-localized to the flanks of pollen tubes and strongly compromised its ability to depolarize pollen tube growth upon over-expression. Based on these observations, we propose that Nt-RhoGDI2-mediated recycling of Nt-Rac5 from the flanks of the tip to the apex has an essential function in the maintenance of polarized Rac/Rop signaling and cell expansion in pollen tubes. Similar mechanisms may generally play a role in the polarized accumulation of Rho GTPases in specific membrane domains, an important process whose regulation has not been well characterized in any cell type to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号