首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the strong mediodorsal setae in terrestrial stage IV larvae of Atrichopogon (Meloehelea) oedemerarum and A. (M.) meloesugans was examined using light, scanning and transmission electron microscopy. Serrated setae placed on prominent processes are distributed in pairs on all thoracic and abdominal segments. Setae are innervated by a single dendrite and their surface has no pores. The trichogen cell is not retracted from the setal lumen on completion of the hair-forming process but fills the mediodorsal seta also when the larval cuticle is fully sclerotised. Such a phenomenon was previously reported in terrestrial larvae of the genus Forcipomyia. We suggest that the mediodorsal setae described in Atrichopogon are plesiotypic mechanoreceptors for the subfamily Forcipomyiinae. They are preserved in the truly terrestrial larvae of Atrichopogon, but modified to secretory setae in the genus Forcipomyia. Both genera bearing distinct mediodorsal setae have developed functional tracheal gills, unknown in other biting midges.  相似文献   

2.
The scent apparatus of male Eldana saccharina is a glandular complex on the costal area of the forewing. It consists of two parts; glandular complex 1 is composed of five kinds of cells (epidermal cells, scale cells, glandular cells, supporting cells, duct cells); glandular complex 2 also shows five types of cells (epidermal cells, scale cells, glandular cells, duct cells, trichogen cells). The secretory products of the two parts are discharged into separate ducts which converge before opening onto the lower side of the wing. The male also has two prominent hair-pencils borne on the coremata and large secretory trichogen cells on the genital valves. Each of these exocrine gland components plays an important part in formation of the chemically complex pheromones utilized in the precopulatory behavior of the male.  相似文献   

3.
为进行中药溪黄草基原植物的品种鉴定,采用光镜和电镜对线纹香茶菜(原变种)[Isodon lophanthoides var.lophanthoides]叶上腺毛的发育进行细胞学研究。结果表明,线纹香茶菜具有头状腺毛和盾状腺毛2种类型。头状腺毛无色透明,由1个基细胞、1个柄细胞和1或2个头部分泌细胞构成;盾状腺毛为红色,由1或2个基细胞、1个柄细胞和4~8个分泌细胞构成头部。2种腺毛均由原表皮细胞经两次平周分裂形成,后因柄细胞和头部细胞所处的分化状态不同而形成两类腺毛。2种腺毛超微结构表明,质体、高尔基体和粗面内质网为主要分泌物产生和运输的细胞器。当盾状腺毛成熟时,角质层下间隙充满了分泌物,其分泌物的性质很可能决定了线纹香茶菜腺毛的颜色。  相似文献   

4.
Exocrine dermal glands, comparable to the class 3 glandular units of insects, are found in the gills of the grass shrimp, Palaemonetes pugio. The dermal glands are composed of three cells: secretory cell, hillock cell and canal cell. Originating as a complex invagination of the apical cytoplasm of the granular secretory cell, a duct ascends through the hillock and canal cells to the cuticular surface. The duct is divisible into four regions: the secretory apparatus in the granular secretory cell, the locular complex, the hillock region within the hillock cell and the canal within the canal cell. A tubular ductule is contained within the latter two regions. As the ductule ascends to the cuticular surface, its constitution gradually changes from one of a fibrous material to one which possesses layers of epicuticle. During the proecdysial period, the ductule is extruded into the ecdysial space and this is followed by the secretion of a new ductule. Temporary ciliary structures, located near the secretory apparatus of the secretory cell, are associated with the extrusion and reformation of the ductule. Characterized only by a basal body and rootlets throughout most of the intermolt cycle, the ciliary organelles give rise to temporary axonemic processes which ascend through the ductule toward the ecdysial space at the onset of proecdysis. Subsequently, the old ductule is sloughed off and a new ductule is reformed around the ciliary axonemes. Following this reformation, the ciliary axonemes degenerate. The function of cytoplasmic processes, derived from the apical cytoplasm of the secretory cell, is also discussed.  相似文献   

5.
Summary Pre-cloacal glands occur in some species of amphisbaenians. Although these glands are important in systematics, their biology and chemistry are little known. The pre-cloacal glands of Amphisbaena alba are of the holocrine type. They are made up of a glandular body and a duct. The glandular body is conical to elongate and is formed of clongatc lobules separated one from another by collagen septa. Each lobule is composed, at its periphery, of germinative cells, and within of polyhedral secretory cells, of different degrees of differentiation. The germinative cells, set on a basal lamina, are basophilic and their cytoplasm is fairly electron dense. The polyhedral cells display bulky cytoplasm, filled with spherical granules, wrapped in membranes and differing in their electron densities. Towards the lumen of the gland, these granules are increasingly eosinophilic and have an affinity for orange G. The secretion is discharged into the duct leading to the pore, which is situated in the central region of the scale. This secretion shows positive histochemical results for mucopolysaccharides and proteins. The similarity between the epidermal glands of lizards and those of A. alba raises the suggestion that the glands have equivalent functions, possibly in the course of intra- or interspecific communication.  相似文献   

6.
In order to find correlations between skin gland morphology and specific ethological features, the cutaneous glands of the foot pads of the primitive mammal the Madagascan tenrec, Echinops telfairi, were studied by histological and various histochemical methods as well as by electron microscopy. In the foot pads specific eccrine skin glands occurred consisting of coiled ducts and tubular secretory portions, the lumina of which were considerably wider than in primate sweat glands. The secretory tubules were composed of branched myoepithelial cells and glandular cells. The latter contained abundant mitochondria, large amounts of glycogen particles and few secretory granules as well as individual heterolysosomes and myelin bodies. The lateral cell membrane was marked by extensive interdigitations. The apical membranes of all glandular cells contained proteoglycans with sulfated and carboxylated groups containing N-acetyl-glucosamine, N-acetyl-galactosamine, galactose and mannose. The expression pattern of cytokeratins of the glandular epithelium was variable and showed similarities to that of the human eccrine glands. Tubulin, vinculin and actin were expressed in the glandular epithelium. The secretory cells showed positive reactions with antibodies against antimicrobial peptides and IgA. A positive reaction was observed with antibodies against the androgen receptor. The PCNA and TUNEL reactions indicated that the tubular skin glands of Echinops are made up of a slowly renewing tissue. We conclude that the glands fulfill several functions: production of a fluid-rich secretory product, which may prevent slipping of the foot pads on the substrate during running or climbing, secretion of antimicrobial peptides and proteins, and playing a role in thermoregulation.We thank the Fendt Foundation for financial support  相似文献   

7.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

8.
Trichoniscus alexandrae Caruso is a blind troglobiont isopod; males possess secretory and sensory organs on the cephalon and 1st pereionite consisting of cuticular pits hosting a tuft of setae and gland openings. Such organs are absent in females. Three types of cuticular structures have been observed: (a) lamellar setae, which likely play a role in protecting the gland openings and favouring the evaporation of secretions; (b) contact chemoreceptors, each provided with six bipolar sensory cells, a scolopale cell and enveloping cells; (c) a secretory cell complex, consisting of a long cylindrical slender duct-forming cell, with the function of transporting to the cuticular surface a secretion produced by two deeper secretory cells. The duct-forming cell is characterized by the presence of numerous microtubules in its cytoplasm, and is provided with a flattened duct. It is suggested that the secretion produced by the secretory cells could serve for sex-recognition.  相似文献   

9.
Sense Organs of Two Marine Arthrotardigrades (Heterotardigrada,Tardigrada)   总被引:1,自引:0,他引:1  
The sense organs of the marine arthrotardigrades Halechiniscus greveni Renaud-Mornant & Deroux and Batillipes noerrevangi Kristensen were investigated with the aid of interference phase-contrast and transmission electron microscopy. The sense organs of the two species are quite different in outer cuticular morphology, but the inner cellular parts are constructed after the same model: the arthropod sensory setae. All investigated sensilla contained ciliary structures. Regeneration of the cirri during moult is very similar to the regeneration process in insects and spiders, but in the two arthrotardigrades the trichogen cell is not retracted from the cuticular part of the setae after moult. The clava is presumed to be olfactory; the cephalic cirri and the leg spines are contact chemoreceptors with one mechanoreceptive cilium terminating at the sensillum shaft. Cirrus E is compared with the trichobothrium of arthropods and the phylogenetic implications of the investigated structures are discussed.  相似文献   

10.
白花罗勒成熟的盾状腺毛头部细胞中 ,质体含量丰富 ,体积较大 ,其中有大量的嗜锇物质积累 ;在分泌过程中 ,分泌细胞出现质壁分离现象 ;嗜锇物质向外分泌的途径有两条 :一条是以胞吐的方式 ,另一条是以渗透的方式  相似文献   

11.
E. Schnepf  P. Christ 《Protoplasma》1980,105(1-2):135-148
Summary The secretory cells of the nectaries ofAsclepias curassavica form a glandular epithelium in the inner parts of the stigmatic chambers. They resemble transfer cells in having many infoldings of the plasmalemma. The wall protuberances, however, are poorly developed and often lacking. The plasmalemma is highly convoluted and forms, in places, external compound membranes where the extracytoplasmic space is collapsed completely. Active glands contain dilated cisternae of the ER and large vesicles which are mainly associated with the cis face of the dictyosomes. In addition, small vesicles are observed in high number. It is discussed whether the secretion is granulocrine or eccrine and whether the enlargement of the plasmalemma is the cause or the consequence of the high secretory activity. After the secretory phase the outer peripheral part of the cytoplasm disintegrates. The remaining part of the protoplast is covered by a new plasmalemma.  相似文献   

12.
The hygroscopic secretion produced by the secretory setae of terrestrial larvae of the biting midge Forcipomyia nigra (Winnertz) was analysed using gas chromatography coupled with mass spectrometry (GC-MS). The viscous secretion is stored at the top of each seta and absorbs water from moist air. GC-MS analyses (four independent tests) showed that the secretion contained 12 free fatty acids, the most abundant of which were oleic (18:1), palmitic (16:0), palmitoleic (16:1) and linoleic (18:2). Other acids identified were valeric (5:0), enanthic (7:0), caprylic (8:0), pelargonic (9:0), capric (10:0), lauric (12:0), myristic (14:0) and stearic (18:0). Two other compounds, glycerol and pyroglutamic acid, were also found. The antibacterial activity of the fatty acids and pyroglutamic acid was tested using the agar disc diffusion method and targeted Gram positive (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis) and Gram negative bacterial strains (Citrobacter freundii, Pseudomonas aeruginosa, Pseudomonas fluorescens). The antifungal activity was tested by determining minimal inhibitory concentration (MIC) of examined compounds. Fatty acids were tested against enthomopathogenic fungi (Paecilomyces lilacinus, Paecilomyces fumosoroseus, Lecanicillium lecanii, Metarhizium anisopliae, Beauveria bassiana (Tve-N39), Beauveria bassiana (Dv-1/07)). The most effective acids against bacterial and fungal growth were C(9:0), C(10:0) and C(16:1), whereas C(14:0), C(16:0,) C(18:0) and C(18:1) demonstrated rather poor antifungal activity and did not inhibit the growth of bacteria. The antimicrobial assay investigated mixtures of fatty and pyroglutamic acids (corresponding to the results of each GC-MS test): they were found to be active against almost all the bacteria except P. fluorescens and also demonstrated certain fungistatic activity against enthomopathogenic fungi. The hygroscopic secretion facilitates cuticular respiration and plays an important role in the antimicrobial protection of F. nigra larvae living in moist terrestrial habitats.  相似文献   

13.
Cell secretion is an important physiological process that ensures smooth metabolic activities, tissue repair and growth and immunological functions in the body. It occurs when the intracellular secretory materials are released to the exterior; these may be in the form of lipids, protein or mucous and may travel through a duct system or via blood to reach the target organ. To date three types of secretory mechanisms have been characterized, they include apocrine, holocrine and exocytosis. Apocrine secretion occurs when the release of secretory materials is accompanied with loss of part of cytoplasm. The secretory materials may be contained in the secretory vesicles or dissolved in the cytoplasm that is lost during secretion. In holocrine secretion, the entire cell is secreted into the glandular lumen, and it is presumed that the intended secretory materials are contained in the cell cytoplasm. Exocytosis is the most commonly occurring type of secretion; here the secretory materials are contained in the secretory vesicles and released without loss of cytoplasm. Apocrine secretory mechanisms have not been properly discussed; for example the biochemical and physiological pathways that regulate apocrine secretory process are not clearly known. Similarly, the plasma membrane dynamics during apocrine secretion has not been researched. In other glands morphological features during apocrine secretion have not been documented. The current paper reviews what is known about apocrine secretion, recent findings and highlights on the unresolved areas for future research.  相似文献   

14.
Development,structure, and occurrence of secretory trichomes ofPharbitis   总被引:1,自引:1,他引:0  
Summary Secretory trichomes develop from epidermal cells on the leaf primordia and stem ofPharbitis nil. Following an initial growth phase, trichomes begin active secretion of a protein-carbohydrate mucilage. This mucilage covers the shoot apex and developing leaves ofPharbitis.The secretory cells possess cellular organelles in forms usually associated with actively secreting cells: many mitochondria, an elaborate network of rough endoplasmic reticulum (RER), many free ribosomes, and numerous dictyosomes. The role of the dictyosomes is twofold: 1. dictyosome vesicles bud coated vesicles which transport materials from the cell and, 2. dictyosome vesicles coalesce, forming large storage vesicles. The storage vesicles are surrounded by, and often in contact with, poculiform RER. The RER forms an interconnected network throughout the cytoplasm, extending from the nuclear envelope to the plasmalemma. Distended profiles of RER are frequently in direct contact with the plasmalemma. Thus, inPharbitis secretory trichomes, it is the coated vesicles and RER which are active in secretion export. These findings imply a secretory pathway which deviates from the usual pattern in glandular cells.Predoctoral fellow of National Science Foundation during part of the investigation.  相似文献   

15.
Summary The secretion present at the lumen of the salivary glands of spinning larvae ofRhynchosciara americana was studied cytochemically and with microspectrophotometry and fluorescence and quantitative polarization microscopy. It was found that structural proteins, including glycoproteins and lipoproteins, occur in this secretion. Findings involving spectral absorption profiles after xylidine ponceau staining, patterns of birefringence and dispersion of birefringence, and lack of dichroism after xylidine ponceau staining and of blue fluorescence after ANS staining are highly suggestive that the secretion ofR. americana differs from classical silks not only in terms of composition but also of macromolecular array. The silk secretion ofR. americana also appears to differ from that of another sciarid,Bradysia spatitergum. Part of the glycoproteins present at the glandular lumen is assumed to be extruded from cells of the posterior zone of the glands, whereas other glycoproteins (or their glycidic radicals) are probably removed from fat body cells via cells of the anterior zone of the glands. The salivary secretion of the spinning larvae ofR. americana contains calcium and is devoid of acid glycosaminoglycans.  相似文献   

16.
The South East Asian arboreal Formicine Echinopla melanarctos, as well as some other members of this genus possess a cuticular structure unique in ants, the pedestal hairs. In E. melanarctos, about 700 pedestal hairs are situated on the dorsal and lateral surfaces of the head, the alitrunk, the petiole and the gaster. They are arranged in a polygon-like figuration. On the summit of each of the up to 200-μm high pedestals, a single central hair inserts. This hair (up to 500-μm long) is innervated by a single bipolar mechanosensitive sensory cell. The lumen of each tube-like pedestal contains (1) epithelial cells (2) the sensory cell and the auxiliary cells of the central hair and (3) the long efferent ductules of up to ten isolated bicellular glandular units. Each glandular unit is composed of a secretory glandular cell and a duct cell, all of which are located at the base of a pedestal. The cytoplasm of a glandular cell contains a well-developed end apparatus and is characterised by stacks of smooth and granular endoplasmic reticulum, numerous polyribosomes, a lot of mitochondria and some up to 5-μm large secretory vesicles. The secretion of the gland cells is released on the apex of the pedestal wall via small pores. Approximately 30 μm below their summit, some pedestals possess additionally (up to six) mechanosensitive hairs that are arranged ray-like. We suppose that the pedestal hairs are important in nest-space protection and find that only in ants with high pedestals on the head (Echinopla melanarctos and Echinopla pallipes), the compound eyes are stalked thus overtopping the pedestals.  相似文献   

17.
The unusual idiosomal glands of a water mite Teutonia cometes (Koch 1837) were examined by means of transmission and scanning electron microscopy as well as on semi-thin sections. One pair of these glands is situated ventrally in the body cavity of the idiosoma. They run posteriorly from the terminal opening (distal end) on epimeres IV and gradually dilate to their proximal blind end. The terminal opening of each gland is armed with the two fine hair-like mechanoreceptive sensilla (‘pre-anal external’ setae). The proximal part of the glands is formed of columnar secretory epithelium with a voluminous central lumen containing a large single ‘globule’ of electron-dense secretory material. The secretory gland cells contain large nuclei and intensively developed rough endoplasmic reticulum. Secretory granules of Golgi origin are scattered throughout the cell volume in small groups and are discharged from the cells into the lumen between the scarce apical microvilli. The distal part of the glands is formed of another cell type that is not secretory. These cells are composed of narrow strips of the cytoplasm leaving the large intracellular vacuoles. A short excretory cuticular duct formed by special excretory duct cells connects the glands with the external medium. At the base of the terminal opening a cuticular funnel strengthens the gland termination. At the apex of this funnel a valve prevents back-flow of the extruded secretion. These glands, as other dermal glands of water mites, are thought to play a protective role and react to external stimuli with the help of the hair-like sensilla.  相似文献   

18.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

19.
Summary The submandibular organ (a sort of apocrine sweat glands) of the rabbit was observed with the electron microscope. The cell structure of glandular tubules varies depending upon the secretory activity; there are three functional stages. The secretory cells at the resting stage are characterized by low height, absence of secretory substance, and presence of small and slender mitochondria.In the synthesizing stage, enlargement and peculiar deformation of mitochondria are observed. Secretory substance always occurs near the deformed mitochondria. The part of a mitochondrion closely abutting on the secretion mass is extremely thin, and contains longitudinally oriented cristae. Sometimes a direct continuity is observed between the thinned portion of the deformed mitochondria and the mass of secretory substance. It is presumed that the secretion is initially produced in the mitochondria and then discharged from them. The Golgi apparatus and the rough surfaced endoplasmic reticulum may be involved indirectly. Smooth surfaced vesicles, probably related to the transport of raw material, are extremely abundant in the cells of this stage.The development of a generally homogeneous projection into the gland lumen is characteristic of the stage of secretion discharge. The mitochondria are again small and slender, and the secretion is liquefied. At the base of the full-grown projection, cytoplasm is condensed to form a demarcation zone from which the projection may become detached. This mechanism of release of secretory product is quite the same as the so-called apocrine secretory process long postulated by light microscopists.  相似文献   

20.
Diagnostic morphological characters of the juvenile Panchaetothripinae in New Zealand are illustrated. Keys developed enable colonies with only immature stages to be identified without needing to rear adults. Live larvae or larvae in ethanol are distinguished by the presence of expanded tips of body setae (Parthenothrips dracaenae), the absence of setae at the abdomen tip (Hercinothrips bicinctus), setae at abdomen tip not longer than abdominal tip width (Heliothrips haemorrhoidalis) and abdominal tip setae longer than abdominal tip width (Sigmothrips aotearoana, endemic species). The presence or absence of spine-like setae on abdominal segments 9 and 10, and the number and length of setae on the wing buds, enable identification of pupae. Abdominal spine-like setae were on the prepupa and pupa of H. bicinctus and S. aotearoana, species that pupate off the plant, and are probably defensive structures. This is the first record of spine-like setae on segment 10 of terebrantian pupae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号