首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effects of different recombinant human cytokines and cytokine inhibitors were compared in a culture system in which cell contact with mutant EL-4 thymoma cells of murine origin efficiently stimulates human B cell proliferation and Ig secretion in conjunction with human T cell supernatant. IL-1 alpha, IL-1 beta, TNF-alpha, and IL-2 co-stimulated B cell proliferation and IgM, IgG, and IgA secretion, whereas IL-3, IL-4, IL-5, IL-6, IFN-gamma, or GM-CSF had weak or no activity in this regard. In contrast, TGF-beta 1 was strongly inhibitory. A very strict hierarchy of cytokine interactions was found in that IL-1 was necessary to induce TNF-alpha responsiveness, and TNF-alpha the IL-2 responsiveness, of the B cells. Most likely the small number of starting B cells in the present assay (300 FACS-separated B cells/200 microliters) minimized the effects of autocrine B cell factors. IL-4 together with IL-1 induced IgE secretion, and the IgE secretion was further increased by TNF-alpha. IFN-gamma had no modulatory effect on the IL-4 dependent IgE response in this system. Pretreatment of B cells with IL-1R antagonist (IL-1ra, which binds to IL-1R) or addition of soluble TNF receptor type 1 (sTNF-R55, which binds to TNF) completely inhibited the IL-1 or TNF-alpha effects, respectively. This occurred in a specific manner; the inhibition was reversed by a large excess of cytokine. IL-1ra also inhibited a B cell response induced by PMA-preactivated EL-4 cells alone. Because B cells responding to such preactivated EL-4 cells did not acquire TNF-alpha responsiveness, no IL-1 was apparently involved under this assay condition. It appears, therefore, 1) that IL-1ra can act on B cells and 2) that this antagonist may not only block IL-1R, but may provide a direct or indirect inhibitory signal interfering even with IL-1-independent B cell activation.  相似文献   

2.
The subpopulation of CD4+ T cells that expresses the Leu-8 peripheral lymph node homing receptor suppresses PWM-stimulated Ig synthesis. To determine the mechanism of this suppression, the immunoregulatory activity of culture supernatants obtained from peripheral blood CD4+ Leu-8+ T cells cultured with anti-CD3 mAb and PMA (Leu-8+ supernatant) was determined. Leu-8+ supernatant suppressed PWM-stimulated Ig synthesis in cultures containing non-T cells and CD4+ Leu-8- T cells. In contrast, the supernatant from CD4+ Leu-8- T cells did not suppress Ig synthesis. The inhibitory activity of CD4+ Leu-8+ T cell supernatants could not be accounted for by a deficiency or excess of IL-2, IL-4, IFN-gamma, IL-6, or PGE2. In studies examining the effect of CD4+ Leu-8+ supernatant on T cells, the supernatant did not alter either mitogen-induced proliferation or the helper function of CD4+ Leu-8- T cells. In studies examining the effect of CD4+ Leu-8+ supernatant on B cells, the supernatant inhibited Staphylococcus aureus Cowan I strain-induced B cell Ig secretion but not B cell proliferation. The suppressor activity of Leu-8+ supernatant was eliminated by protease treatment and was eluted by HPLC in two main peaks, with molecular sizes of 44 and 12 kDa. In summary, these studies indicate that supernatants from activated CD4+ Leu-8+ T cells directly suppress B cell Ig production.  相似文献   

3.
The 24-hr culture supernatant of Con A-activated spleen cells (SN) contains helper factors that enable maturation to high-rate polyclonal Ig secretion and enhance proliferation in cultures of mouse B cells activated with the F(ab')2 fragment of class-specific rabbit antimouse IgM antibody (anti-Ig). When interleukin 2 (IL 2), also called T cell growth factor, is removed from SN by absorption with an IL 2-dependent cell line at either 4 degrees C or 37 degrees C, all the helper activity for anti-Ig-activated B cells is also removed. Partial removal of IL 2 results in partial removal of helper activity for B cells. However, the IL 2-depleted SN appears to contain another helper factor, TRF, that enables anti-Ig-activated B cell cultures to mature to high-rate Ig secretion. This TRF activity is revealed by adding purified human IL 2 or an IL 2-containing supernatant of a cloned, lectin-activated T cell hybridoma line (FS6-14.13) to Il 2-depleted SN, which restores the polyclonal antibody response to anti-Ig. The hybridoma supernatant by itself supports proliferation of anti-Ig-activated B cell cultures, as measured by an increase in cell number, but not maturation to Ig secretion. This proliferative response is likewise IL 2 dependent, although purified IL 2 with anti-Ig is not sufficient. These experiments define separable combinations of factors acting on anti-Ig-activated B cell cultures, one of which (SN) results in both proliferation and maturation to high-rate Ig secretion, whereas the other (hybridoma supernatant) results in proliferation only. IL 2 appears to be an essential component of both combinations, although the target cell for IL 2 action in this system remains to be determined.  相似文献   

4.
Ag-specific and MHC-restricted Th clones of different Ag specificities and MHC haplotypes were tested for their ability to produce soluble factors capable of providing the signals required for B cell activation and IgG antibody production. Each of five Th clones tested generated significant helper activity in supernatants derived from coculture of the T cell clone with specific Ag and syngeneic APC. The same helper activity was detected in supernatants of clones stimulated with immobilized anti-CD3 antibody in the absence of Ag or APC. The secreted helper activity resembled the activity of the intact Th cells in that it was Ag-specific, carrier-hapten-linked and MHC-restricted. These T cell products functioned to activate only those B cells expressing MHC products which corresponded to the specificity of each Th clone. Thus, the specificity of the cell-free T cell product mimicked precisely that expressed by the intact Th cell and presumably mediated by the cell surface TcR. In addition to the apparent presence of specific helper factor in Th clone supernatants, a role for nonspecific lymphokines was also identified in these preparations. Although recombinant or purified IL-4 alone was not sufficient to stimulate hapten-primed B cells to secrete hapten-specific IgG antibodies, mAb specific for IL-4 blocked the induction of antibody secretion by Th cell supernatant. These results indicate that stimulation of B cells to produce hapten-specific IgG antibody requires at least two distinct signals: an Ag-specific T cell signal which is restricted by MHC products expressed on the B cells, and a nonspecific signal mediated at least in part by the lymphokine IL-4.  相似文献   

5.
Functional heterogeneity among human inducer T cell clones   总被引:12,自引:0,他引:12  
Analysis of mouse CD4+ inducer T cells at the clonal level has established that a dichotomy among CD4+ T cell clones exists with regard to types of lymphokines secreted. Mouse T cell clones designated Th1 have been shown to secrete IL-2 and IFN-gamma, whereas T cell clones designated Th2 have been shown to produce IL-4 but not IL-2 or IFN-gamma. To determine if such a dichotomy in the helper inducer T cell subset occurred in man, we examined a panel of human CD4+ helper/inducer T cell clones for patterns of lymphokine secretion and for functional activity. We identified human T cell clones which secrete IL-4 but not IL-2 or IFN-gamma, and which appeared to correspond to murine Th2 clones. In marked contrast to murine IL-2 secreting Th1 clones which do not produce IL-4 or IFN-gamma, we observed that some human T cell clones secrete IL-2, and IFN-gamma as well as IL-4. Southern blot analysis indicated that these multi-lymphokine-secreting clones represented the progeny of a single T cell. IL-4 secretion did not always correlated with enhanced ability to induce Ig synthesis. Although one T cell clone which secreted IL-2, IL-4, and IFN-gamma could efficiently induce Ig synthesis, another expressed potent cytolytic and growth inhibitory activity for B cells, and was ineffective or inhibitory in inducing Ig synthesis. These results indicate that although the equivalent of murine Th2 type cells appears to be present in man, the simple division of T cells into a Th1 and Th2 dichotomy may not hold true for human T cells.  相似文献   

6.
The serum-free supernatant of a cloned murine T cell hybridoma supports the proliferation and maturation to Ig secretion of purified B cells (mu+ cells) from BALB/c nu/nu mice, but has no effect on the proliferation of nylon wool-selected BALB/c nu/+ splenic T cells. Although the supernatant activates B cells without co-stimulation, it synergizes with anti-mu for the proliferative response. The induction of B cell proliferation and maturation to Ig secretion is directly related to contamination of the hybridoma by Mycoplasma hyorhinis. Hybridoma cells freed of mycoplasma by detergent treatment fail to produce active supernatant, and reinfection of the treated cells reconstitutes the activity. Furthermore, deliberate infection of a mycoplasma-free unrelated T cell hybridoma, as well as the monocytic cell line P388D1, results in the production of supernatants with B cell proliferating activity. Mycoplasma organisms isolated from the supernatant induce B cell proliferation without subsequent maturation to Ig secretion. Gel filtration chromatography of the supernatant from mycoplasma-contaminated hybridoma cells yields two peaks of activity. The first peak, found at the exclusion limit of the gel, results in B cell proliferation without maturation and may be attributed to mycoplasma organisms. The second peak (average m.w. 90,000) results in B cell proliferation as well as differentiation to Ig secretion. A "lymphokine-like" soluble product released by Mycoplasma hyorhinis is most likely responsible for this B cell activation, because fractionation of the supernatant from deliberately contaminated P388D1 cells gives essentially the same results, and gel filtration of mycoplasma-free supernatants does not generate any active fractions. The possibility should be considered that mycoplasma-derived soluble products may be among the many factors controlling in vitro B cell growth and maturation.  相似文献   

7.
A human T4+/Leu-8+ T cell clone (YA2) was established by phytohemagglutinin activation and interleukin 2 (IL 2) propagation. Functional characterization of this clone demonstrated that it provided potent help towards Ig production by pokeweed mitogen-stimulated B cells in the presence of small numbers of autologous T cells or by Staphylococcus aureus Cowan I (SAC)-activated B cells in the presence of B cell growth factor (BCGF). YA2 provided no help to resting B cells and minimal help to either unactivated B cells cultured with BCGF or SAC-activated B cells. Supernatant generated from clone YA2 by IL 2 stimulation had significant B cell differentiation activity but no BCGF or IL 2 activity. Thus, YA2 is a T4+/Leu-8+ potent direct helper only to B cells that are activated and proliferating due to its selective secretion of a differentiation factor, and not an activation and growth factor. The availability of phenotypically defined cloned populations of T cells with restricted functional helper activity related to the secretion of selected B cell tropic factors should prove useful in the dissection of the role of individual T cell subsets in the regulation of the human B cell cycle.  相似文献   

8.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

9.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Previously it was demonstrated that the human autoreactive CD4+ T cell clone MTC-4 is bifunctional, having the capacity to augment differentiation of autologous B cells into Ig-secreting cells in the absence of PWM and the capacity to suppress such differentiation in the presence of PWM. In the present study it was shown that these two functions of MTC-4 are mediated by distinctly different mechanisms. In the presence of autologous class II MHC Ag, MTC-4 releases one or more non-MHC-restricted soluble factors which stimulate B cell differentiation. The helper factors are different from IL-2, and act on both resting (small) and activated (large) B cells. The suppressor function of MTC-4 cells is elicited when MTC-4 cells are co-cultured with autologous non-T cells preincubated with PWM for 4 h, but not with non-T cells preincubated with PWM for 24 h; thus, activated autologous non-T cells have a transient capacity to induce MTC-4 suppressor function. Induction of MTC-4 suppressor activity is not associated with increased proliferation of MTC-4 and is mediated by low numbers of these cells. Unlike helper function, MTC-4 suppression of Ig synthesis can occur late in B cell cultures, and MTC-4 suppresses Ig production by autologous B cells, but not by allogeneic B cells. Finally, in co-cultures with activated autologous non-T cells and allogeneic B cells, MTC-4 can simultaneously produce helper factors that augment Ig synthesis by allogeneic B cells and suppress Ig synthesis by autologous B cells. In summary, exposure of MTC-4 to autologous non-T cells causes release of non-MHC-restricted factors which augment Ig production by both resting and activated autologous B cells, whereas exposure of MTC-4 to recently activated B cells causes MTC-4 to express the additional function of directly suppressing Ig production by differentiated autologous B cells. Thus autoreactive T cells may be uniquely suited to regulate Ig production.  相似文献   

11.
We have investigated whether cell division is required for induction of Ig secretion from three types of B cells, which represent distinct activation states: normal splenic B cells, anti-Ig-treated B cells, and a monoclonal murine B cell tumor, BCL1. Polyclonal Ig secretion was stimulated in vitro by LPS or by lymphokines produced by EL-4 cells (EL-4 SN), which includes B cell growth factor II (BCGF II). LPS and EL-4 SN were mitogenic for all three cell populations and stimulated substantial IgM secretion from both B cells and anti-Ig blasts. Aphidicolin, a reversible inhibitor of DNA synthesis, abolished IgM secretion from B cells and anti-Ig blasts induced by either mitogen, indicating that Ig-secreting cells in these cultures are part of a cycling population. BCL1 tumor cells respond to BCGF II (but not to interleukin 2 or B cell stimulatory factor 1) with IgM secretion and cell division, allowing a direct assessment of the influence of BCGF II-stimulated cell division on secretion of IgM. Secretion by these cells during the first 24 hr of culture was not substantially affected by aphidicolin, but secretion at 48 or 72 hr was markedly inhibited. Culture of BCL1 cells for 48 hr with aphidicolin alone had no effect on cell viability or on subsequent responsiveness if the drug was removed, eliminating non-specific toxicity as an explanation of the drug's effect. Addition of aphidicolin during the last 24 hr of culture to either normal B cells or BCL1 cells was much less effective at inhibiting IgM secretion. These results indicate that the cells that secrete IgM in response to BCGF II also synthesize DNA when exposed to this factor. Thus, induction of high-rate Ig secretion from murine B cells by some stimuli, including BCGF II, may require at least one round of cell division.  相似文献   

12.
IL-4-dependent IgE switch in membrane IgA-positive human B cells   总被引:6,自引:0,他引:6  
IgE responses by human B cells, separated according to membrane Ig classes, were analyzed in a clonal assay using EL-4 thymoma cells as helper cells, T cell supernatant, and rIL-4. In cultures seeded by means of the autoclone apparatus of the FACS, IgE responses were generated frequently by either IgM (mu+/gamma-alpha-) or IgA (alpha +/mu-)-positive B cells (16 and 14% of the Ig producing wells, respectively), but rarely by IgG (gamma +/mu-)-positive B cells (1.3% of Ig producing wells). The total amounts of Ig secreted by IgM-, IgG-, or IgA-positive cells and the total proportions of responding autoclone wells (23-27%) were comparable. All IgE secretion was IL-4 dependent. When the Ig secretion patterns from alpha +/mu- vs alpha +/mu-epsilon- B cells were compared, most autoclone wells from both types of cells produced IgA only, and similar proportions of IgA producing wells (6.2 and 6.0%) also secreted IgE. In addition, IgE restricted responses occurred 6 times more frequently with alpha +/mu- than with alpha +/mu-epsilon- cells, which suggests that membrane IgA+E double-positive, IgE committed B cells occur in vivo. The isotype pattern generated by alpha +/mu-epsilon- B cells cannot be explained by a chance assortment of separate IgA and IgE precursors or by cytophilic antibody. Thus, IL-4 dependent switch to IgE occurred frequently in IgM- or IgA-positive, but rarely among total IgG-positive, B cells. This could be relevant to IgE production in mucosal tissues rich in IgA expressing B cells.  相似文献   

13.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

14.
Supernatants from S26.5 helper T cells, autoimmune viable motheaten (mev/mev) mouse spleen cells, EL4 lymphoma cells, and recombinant DNA-derived interferon gamma (IFN-gamma), all of which display B cell maturation factor (BMF) activity, were assayed for effects on B cell proliferation alone and with Dextran Sulfate (DxS) and anti-immunoglobulin antibodies (alpha-Ig). Both EL4 and S26.5 supernatants showed BCGF-II (DxS co-stimulator) activity, whereas only EL4 supernatant had BCGF-I (alpha-Ig co-stimulator or BSF-I) activity. Supernatants from mev/mev spleen cells and recombinant DNA-derived IFN-gamma showed no activity in either assay. Fractionation of S26.5 supernatant by chromatofocusing showed a divergence of BMF activity (BMF-T, pIa of 6.0) from BCGF-II activity (pIa of 5.4), providing evidence for their physical nonidentity. IFN-gamma, which decreases B cell viability in culture, was separable from BMF-T by phenyl-Sepharose chromatography. BMF-T from S26.5 supernatant was separated from IFN-gamma and BCGF-II and was shown to induce B cell maturation without affecting B cell proliferation. The molecular characteristics of the purified BMF-T were pIa 6.0, Mr 55,000 by G-75 gel filtration, and Mr 16,000 by SDS-PAGE. These data demonstrate that several lymphokines (BMF) exist that mediate the maturation of B cells to active Ig secretion without stimulating B cell proliferation.  相似文献   

15.
Cross-linkage of membrane IgD on resting murine B cells, by anti-IgD mAb conjugated to dextran (alpha delta-dex), induces high levels of proliferation, and in the presence of IL-2 or IL-5, Ig secretion in vitro. The structural and functional similarities between alpha delta-dex and TNP-Ficoll for B cell responses led us to propose that alpha delta-dex could provide a model system for studying B cell activation induced by T cell-independent, type II Ag. In this report, we study the effects of Ig class switch and differentiation factors on Ig isotype production by murine B cells activated by alpha delta-dex, and directly compare these to responses obtained after activation by LPS. We show that an IL-4-containing CD4+ T cell supernatant (Th2 SN) stimulates large increases in IgG1 and IgE production by LPS-activated B cells, but fails to stimulate detectable levels of IgE by alpha delta-dex-activated cells, despite inducing high levels of secreted IgM and IgG1. This is correlated with undetectable steady state levels of both germ-line and rearranged (productive) IgE-specific RNA in B cells stimulated with alpha delta-dex + Th2 SN. Alpha delta-dex is selective in its failure to costimulate IgE production in that IFN-gamma-containing T cell supernatant (Th1 SN) and transforming growth factor-beta-supplemented Th2 SN selectively stimulate a large IgG2a and IgA secretory response, respectively. Anti-IgD conjugated to Sepharose beads, in distinct contrast to dextran, costimulates a strong IgE response. These findings underscore the importance of the specific B cell activator, in addition to IL-4, in the regulation of IgE production.  相似文献   

16.
Plasma membranes from the mitogen-activated mouse Th2 cell clone D10.G4.1 have recently been shown to provide the cell contact-dependent signals necessary for the induction of small B cell proliferation. Together with the Th2-derived lymphokines IL-4 and IL-5, these membranes stimulate production of Ig isotypes identical to those produced when B cells were stimulated by intact Th2 cells. In contrast, Th1 clones are poor inducers of Ig production in vitro. This could be solely due to differences in the lymphokines released by Th1 and Th2 cells or to differences in the cell-cell contact signals delivered by activated Th1 and Th2 cells. We report that membranes from three different activated Th1 clones induced strong Ag-independent proliferation of small dense B cells. The level of B cell proliferation was enhanced approximately fourfold by the addition of lymphokine-containing supernatant from Con A-activated Th2 cells and was unaffected by any of the lymphokine-containing supernatants from Con A-activated Th1 clones. As with D10.G4.1 membranes, Th1 membranes alone induced B cell proliferation but not secretion of Ig. However, addition of supernatant from Con A-activated D10.G41 cells, but not any supernatants from Con A-activated Th1 cells, induced Ig secretion of all isotypes. These effects were shown to not simply result from increased B cell numbers after stimulation with Th2 lymphokines. Thus, Th1 cell clones seem to poorly induce antibody responses entirely because of their lymphokine repertoire and not because of differences or deficiencies in the ability of these cells to deliver cell contact-dependent signals to B cells.  相似文献   

17.
A human helper T cell clone (d4), which showed its helper effect on the differentiation of both T and B cells, was established by MLC reaction of normal T cells against a B lymphoblastoid cell line (CESS) followed by cloning in the presence of IL2 and x-irradiated CESS and autologous non-T cells. d4 cells helped the induction of cytotoxic T cells against UV-treated CESS cells. Antigen-stimulated d4 cells secreted helper factor(s) involved in the induction of cytotoxic T cells (killer helper factor(s), KHF), and KHF activity could be separated into two fractions, one with the m.w. of 15,000 to 20,000 and the other with the m.w. of 45,000 to 50,000. The factor with 15,000 to 20,000 m.w. showed IL 2 activity; the other factor showed gamma-interferon activity without IL 2 activity, suggesting that both IL 2 and gamma-interferon exerted KHF activity. d4 cells or their culture supernatant showed helper activity in the induction of IgG in a B cell line (CESS). The helper activity of the supernatant (TRF) was absorbed with CESS cells but not with IL 2-dependent CTLL, whereas KHF activity was absorbed with IL 2-dependent CTLL but not with CESS cells. The results showed that TRF and KHF were distinct molecules and a single helper T cell clone could secrete helper factors for both B and T cells.  相似文献   

18.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   

19.
CD28 is an Ag of 44-kDa Mr that is expressed on the membrane of the majority of human T cells and that is recognized by mAb 9.3. The functional effects of mAb 9.3 on peripheral blood T cells were studied. mAb 9.3 was not mitogenic, unless it was combined with PMA. When CD28 was cross-linked after binding of mAb 9.3 to the T cell by immobilized or soluble anti-mouse IgG, T cells proliferated in response to rIL-2, provided that monocytes were also present. The additional signal required for IL-2 responsiveness after cross-linking of CD28 could also be delivered in cultures of purified T cells by a cellfree monocyte culture supernatant. Expression of IL-2R on about 10% of the T cells was demonstrated by staining with an anti-IL-2R mAb, and was found to be largely restricted to CD4+ cells. The active compound responsible for the helper signal in the monocyte culture supernatant was identified as IL-6 because purified IL-6 (but not IL-1 beta) had similar activity and because an antiserum to IL-6 (but not an antiserum to IL-1 beta) neutralized the activity of the monocyte supernatant and blocked T cell proliferation. An anti-IL-2R antibody also completely inhibited T cell proliferation induced by the combination of mAb 9.3, IL-2, and IL-6. Our results provide evidence that cross-linking of CD28 induces functional IL-2R and that this activity is dependent on a helper signal provided by monocytes, more specifically IL-6. Moreover, our results indicate that IL-6 (previously called B cell stimulatory factor-2) is active on T cells. If a natural ligand for CD28 can be identified, the mechanism of induction of IL-2 responsiveness described here might explain how T cells become nonspecifically involved in an ongoing cellular immune reaction.  相似文献   

20.
The isolation and characterization of the human helper inducer T cell subset   总被引:91,自引:0,他引:91  
Monoclonal antibody anti-4B4 was produced by fusing NS1 myeloma with spleen cells of a mouse immunized with Saguinus oedipus lymphocyte. This anti-4B4 antibody defines a 135-KD cell surface protein that is widely distributed throughout the hematopoietic system. More importantly, anti-4B4 is reactive with functionally unique human T cell subsets. Anti-4B4 antibody was reactive with approximately 41% of unfractionated T cells, 41% of T4+ inducer cells, and approximately 43% of T8+ cytotoxic/suppressor population. This antibody subdivided peripheral blood T4+ cells into two functionally distinct populations. The T4+4B4+ subset proliferates relatively poorly upon stimulation with Con A and autologous cell antigens (AMLR) but well on exposure to soluble antigens, and it provides a good helper signal for PWM-induced Ig synthesis. The T4+4B4- subset, in contrast, proliferates well to Con A stimulation and autologous cell antigen (AMLR) but relatively poorly to soluble antigen stimulation, and provides little help to B cells for PWM-induced Ig synthesis. The T4+4B4- subset is largely 2H4+ and functions as the inducer of the T8+ suppressor cells. Thus, the present results suggest that one can divide the human T4 population into two major subsets that are phenotypically and functionally distinct, the human helper inducer subset (T4+4B4+/H.I.) and its reciprocal population defined by anti-2H4, the suppressor inducer subset (T4+2H4+/S.I.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号