首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge.

Methods

Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically with OVA for one month. Levels of airway inflammation (eosinophils), Siglec-F ligand expresion and remodeling (mucus, fibrosis, smooth muscle thickness, extracellular matrix protein deposition) were assessed in lung sections by image analysis and immunohistology. Airway hyperreactivity to methacholine was assessed in intubated and ventilated mice.

Results

Siglec-F deficient mice challenged with OVA for one month had significantly increased numbers of BAL and peribronchial eosinophils compared to WT mice which was associated with a significant increase in mucus expression as assessed by the number of periodic acid Schiff positive airway epithelial cells. In addition, OVA challenged Siglec-F deficient mice had significantly increased levels of peribronchial fibrosis (total lung collagen, area of peribronchial trichrome staining), as well as increased numbers of peribronchial TGF-β1+ cells, and increased levels of expression of the extracellular matrix protein fibronectin compared to OVA challenged WT mice. Lung sections immunostained with a Siglec-Fc to detect Siglec-F ligand expression demonstrated higher levels of expression of the Siglec-F ligand in the peribronchial region in OVA challenged Siglec-F deficient mice compared to WT mice. WT and Siglec-F deficient mice challenged intranasally with IL-4 or IL-13 had significantly increased levels of airway epithelial Siglec-F ligand expression, whereas this was not observed in WT or Siglec-F deficient mice challenged with TNF-α. There was a significant increase in the thickness of the peribronchial smooth muscle layer in OVA challenged Siglec-F deficient mice, but this was not associated with significant increased airway hyperreactivity compared to WT mice.

Conclusions

Overall, this study demonstrates an important role for Siglec-F in modulating levels of chronic eosinophilic airway inflammation, peribronchial fibrosis, thickness of the smooth muscle layer, mucus expression, fibronectin, and levels of peribronchial Siglec-F ligands suggesting that Siglec-F may normally function to limit levels of chronic eosinophilic inflammation and remodeling. In addition, IL-4 and IL-13 are important regulators of Siglec-F ligand expression by airway epithelium.  相似文献   

2.
Environmental tobacco smoke (ETS) can increase asthma symptoms and the frequency of asthma attacks. However, the contribution of ETS to airway remodeling in asthma is at present unknown. In this study, we have used a mouse model of allergen-induced airway remodeling to determine whether the combination of chronic exposure to ETS and chronic exposure to OVA allergen induces greater levels of airway remodeling than exposure to either chronic ETS or chronic OVA allergen alone. Mice exposed to chronic ETS alone did not develop significant eosinophilic airway inflammation, airway remodeling, or increased airway hyperreactivity to methacholine. In contrast, mice exposed to chronic OVA allergen had significantly increased levels of peribronchial fibrosis, increased thickening of the smooth muscle layer, increased mucus, and increased airway hyperreactivity which was significantly enhanced by coexposure to the combination of chronic ETS and chronic OVA allergen. Mice coexposed to chronic ETS and chronic OVA allergen had significantly increased levels of eotaxin-1 expression in airway epithelium which was associated with increased numbers of peribronchial eosinophils, as well as increased numbers of peribronchial cells expressing TGF-beta1. These studies suggest that chronic coexposure to ETS significantly increases levels of allergen-induced airway remodeling (in particular smooth muscle thickness) and airway responsiveness by up-regulating expression of chemokines such as eotaxin-1 in airway epithelium with resultant recruitment of cells expressing TGF-beta1 to the airway and enhanced airway remodeling.  相似文献   

3.
TCR activation of naive T cells in the presence of IL-12 drives polarization toward a Th1 phenotype and synthesis of P- and E-selectin ligands. Fucosyltransferase VII (Fuc-T VII) and core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) are critical for biosynthesis of selectin ligands. P-selectin glycoprotein ligand-1 is the best characterized ligand for P-selectin and also binds E-selectin. The contributions of TCR and cytokine signaling pathways to up-regulate Fuc-T VII and C2GnT during biosynthesis of E- and P-selectin ligands, such as P-selectin glycoprotein ligand 1, are unknown. IL-12 signals via the STAT4 pathway. Here, naive DO11.10 TCR transgenic and STAT4(-/-) TCR transgenic CD4(+) T cells were stimulated with Ag and IL-12 (Th1 condition), IL-4 (Th2), or neutralizing anti-IL-4 mAb only (Th0). The levels of Fuc-T VII and C2GnT mRNA in these cells were compared with their adhesive interactions with P- and E-selectin in vitro under flow. The data show IL-12/STAT4 signaling is necessary for induction of C2GnT, but not Fuc-TVII mRNA, and that STAT4(-/-) Th1 cells do not traffic normally to sites of inflammation in vivo, do not interact with P-selectin, and exhibit a partial reduction of E-selectin interactions under shear stress in vitro. Ag-specific TCR activation in CD4(+) T cells was sufficient to trigger induction of Fuc-TVII, but not C2GnT, mRNA and expression of E-selectin, but not P-selectin, ligands. Thus, Fuc-T VII and C2GnT are regulated by different signals during Th cell differentiation, and both cytokine and TCR signals are necessary for the expression of E- and P-selectin ligands.  相似文献   

4.
Selectins support the capture and rolling of leukocytes in venules at sites of inflammation and in lymphocyte homing. Gene-targeted mice with null mutations at the L-, E-, or P-selectin locus develop normally and show mild (E-/-) to moderate (P-/-, L-/-) defects in inflammatory cell recruitment. Mice lacking both P- and E-selectin (E/P-/-) have severe neutrophilia and spontaneous skin infections that limit their life span. Other combinations of selectin deficiency have not been investigated. We have generated novel mice lacking L- and P-selectin (L/P-/-), L- and E-selectin (L/E-/-), or all three selectins (E/L/P-/-) by bone marrow transplantation. L/P-/- mice (only E-selectin present) show an absence of leukocyte rolling after trauma and severely reduced rolling (by approximately 90%) in inflammation induced by TNF-alpha. Residual rolling in L/P-/- mice was very slow (3.6 +/- 0.2 micrometers/s after TNF-alpha). L/E-/- mice (only P-selectin present) showed rolling similar to that of L-/- at increased velocities (15.1 +/- 0.3 micrometer/s). The number of adherent leukocytes after 2 or 6 h of TNF-alpha treatment was not significantly reduced in L/E-/- or L/P-/- mice. E/L/P-/- mice showed very little rolling after TNF-alpha, all of which was blocked by mAb to alpha4 integrin. Adherent and emigrated neutrophils were significantly reduced at 6 h after TNF-alpha. We conclude that any one of the selectins can support some neutrophil recruitment but eliminating all three selectins significantly impairs neutrophil recruitment.  相似文献   

5.
The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naive wild-type (WT) mice were challenged once intranasally with Alternaria. Naive WT mice developed significant bronchoalveolar lavage eosinophilia following Alternaria challenge when analyzed 24 h later. In contrast to Alternaria, neither Aspergillus nor Candida induced bronchoalveolar lavage eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naive WT mice had a >20-fold increase in the level of expression of found in inflammatory zone 1 (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression as early as 3 h after a single Alternaria challenge that persisted for ≥5 d and was significantly reduced in STAT6-deficient, but not protease-activated receptor 2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, whereas STAT6 present in bone marrow-derived cells contributed to airway eosinophilia. Studies investigating which cells in the nonchallenged lung bind FIZZ1 demonstrated that CD45(+)CD11c(+) cells (macrophages and dendritic cells), as well as collagen-1-producing CD45(-) cells (fibroblasts), can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.  相似文献   

6.
We demonstrated previously that CD81(-/-) mice have an impaired Th2 response. To determine whether this impairment affected allergen-induced airway hyperreactivity (AHR), CD81(-/-) BALB/c mice and CD81(+/+) littermates were sensitized i.p. and challenged intranasally with OVA. Although wild type developed severe AHR, CD81(-/-) mice showed normal airway reactivity and reduced airway inflammation. Nevertheless, OVA-specific T cell proliferation was similar in both groups of mice. Analysis of cytokines secreted by the responding CD81(-/-) T cells, particularly those derived from peribronchial draining lymph nodes, revealed a dramatic reduction in IL-4, IL-5, and IL-13 synthesis. The decrease in cytokine production was not due to an intrinsic T cell deficiency because naive CD81(-/-) T cells responded to polyclonal Th1 and Th2 stimulation with normal proliferation and cytokine production. Moreover, there was an increase in T cells and a decrease in B cells in peribronchial lymph nodes and in spleens of immunized CD81(-/-) mice compared with wild-type animals. Interestingly, OVA-specific Ig levels, including IgE, were similar in CD81(-/-) and CD81(+/+) mice. Thus, CD81 plays a role in the development of AHR not by influencing Ag-specific IgE production but by regulating local cytokine production.  相似文献   

7.
BACKGROUND: The pathogenesis of asthma is believed to reflect antigen-induced airway inflammation leading to the recruitment of eosinophils and activation of mast cells through cell-associated IgE. Controversies persist however, regarding the relative importance of different pathogenic cells and effector molecules. MATERIALS AND METHODS: A variety of gene-targeted mice were examined for the induction of cholinergic airway hyperresponsiveness (AH), allergic airway inflammation, mucus production, and serum IgE reactivity following intratracheal challenge with a potent allergen. AH was determined using whole-body plethysmography following acetylcholine challenge. Where possible, results were confirmed using neutralizing antibodies and cell-specific reconstitution of immune deficient mice. RESULTS: T and B cell-deficient, recombinase-activating-gene-deficient mice (RAG -/-) failed to develop significant allergic inflammation and AH following allergen challenge. Reconstitution of RAG -/- mice with CD4+ T cells alone was sufficient to restore allergen-induced AH, allergic inflammation, and goblet cell hyperplasia, but not IgE reactivity. Sensitized B cell-deficient mice also developed airway hyperreactivity and lung inflammation comparable to that of wild-type animals, confirming that antibodies were dispensable. Treatment with neutralizing anti-IL-4 antibody or sensitization of IL-4-deficient mice resulted in loss of airway hyperreactivity, whereas treatment with anti-IL-5 antibody or sensitization of IL-5-deficient mice had no effect. CONCLUSIONS: In mice, CD4+ T cells are alone sufficient to mediate many of the pathognomonic changes that occur in human asthma by a mechanism dependent upon IL-4, but independent of IL-5, IgE, or both. Clarification of the role played by CD4+ T cells is likely to stimulate important therapeutic advances in treatment of asthma.  相似文献   

8.
Immune responses may be qualitatively distinct depending on whether Th1 or Th2 cells predominate at the site of Ag exposure. T cell subset-specific expression of ligands for vascular selectins may underlie the distinct patterns of recruitment of Th1 or Th2 cells to peripheral inflammatory sites. Here we examine the regulation of selectin ligand expression during murine T helper cell differentiation. Large numbers of Th1 cells interacted with E- and P-selectin under defined flow conditions, while few Th2 and no naive T cells interacted. Th1 cells also expressed more fucosyltransferase VII mRNA than naive or Th2 cells. IL-12 induced expression of P-selectin ligands on Ag-activated naive T cells, even in the presence of IL-4, and on established Th2 cells restimulated in the presence of IL-12 and IFN-gamma. In contrast, Ag stimulation alone induced only E-selectin ligand. Interestingly, restimulation of established Th2 cells in the presence of IL-12 and IFN-gamma induced expression of P-selectin ligands but not E-selectin ligands; IFN-gamma alone did not enhance expression of either selectin ligand. In summary, functional P- and E-selectin ligands are expressed on most Th1 cells, few Th2 cells, but not naive T cells. Furthermore, selectin ligand expression is regulated by the cytokine milieu during T cell differentiation. IL-12 induces P-selectin ligand, while IL-4 plays a dominant role in down-regulating E-selectin ligand.  相似文献   

9.
The role of the integrins VLA-4 and LFA-1 and of the selectin adhesion molecules in autoimmune arthritis was investigated. Adjuvant arthritis was induced in Lewis rats by active immunization (s.c.) with Mycobacterium butyricum or by adoptive transfer of immune T cells. With active adjuvant arthritis, Lewis rats develop maximal polyarticular joint inflammation and migration of radiolabelled (111In and 51Cr) blood neutrophils and monocytes to the joints 14 days post Mycobacterium butyricum immunization. Using blocking monoclonal antibodies we osbserved that at this stage monocyte recruitment was dependent (85%) on P-selectin plus VLA-4 (alpha4B1) and neutrophil recruitment depended (> 80%) on P-selectin plus LFA-1 (CD11a/CD18). E-selectin played a minimal role in inflammatory cell recruitment to the already inflamed joint. In contrast, during the development of active adjuvant arthritis, blockade of P-selectin beginning at day 5 post-immunization had no effect on subsequent arthritis. However, E-selectin blockade at this stage reduced arthritic scores by 70% (P < 0.01) and combined E-selectin plus VLA-4 blockade prevented development of arthritis. Either treatment nearly abolished neutrophil and monocyte recruitment to joints at day 14 and prevented cartilage damage. VLA-4 blockade alone was less effective. Adoptive T-cell transfer of adjuvant arthritis to naive rats employed spleen/lymph node lymphocytes from Mycobacterium butyricum immunized rats stimulated with Concanavalin A in vitro (48 h). E-selectin +/- P-selectin blockade had no effect on the development of adoptive arthritis. However, VLA-4 integrin blockade inhibited adoptive arthritis severity by 55% (P < 0.01). LFA-1 blockade had no effect. In adoptive adjuvant arthritis, inhibition of arthritis clinically and by histology was essentially complete (> 90%) when E- and P-selectin blockade was combined with VLA-4 blockade. Thus, in the development of actively induced arthritis E-selectin plays an important role, likely mediating early antigen reactive T-cell recruitment to joints. In contrast, VLA-4 and multiple selectin mechanisms are involved in arthritis induction by ex vivo restimulated arthritogenic T cells. Furthermore, in actively induced adjuvant arthritis, P- and E-selectin and VLA-4 are differently important in the initiation of arthritis, and at the time of fully developed joint inflammation.  相似文献   

10.
The effects of different sensitization and allergen provocation regimens on the development of allergen-induced bronchial hyperreactivity (BHR) to histamine were investigated in conscious, unrestrained guinea-pigs. Similar early and late phase asthmatic reactions, BHR for inhaled histamine after the early (6 h) as well as after the late reaction (24 h), and airway inflammation were observed after a single allergen provocation in animals sensitized to produce mainly IgG or IgE antibodies, respectively. Repeating the allergen provocation in the IgE-sensitized animals after 7 days, using identical provocation conditions, resulted in a similar development of BHR to histamine inhalation. Repetition of the allergen provocation during 4 subsequent days resulted in a decreased development of BHR after each provocation, despite a significant increase in the allergen provocation dose necessary to obtain similar airway obstruction. The number of inflammatory cells in the bronchoalveolar lavage was not significantly changed after repeated provocation, when compared with a single allergen provocation. Finally, we investigated allergen-induced bronchial hyperreactivity by repetition of the sensitization procedure at day 7 and 14 (booster), followed by repeated allergen provocation twice a week for 5 weeks. Surprisingly, no BHR to histamine could be observed after either provocation, while the number of inflammatory cells in the bronchoalveolar lavage fluid after 5 weeks was enhanced compared with controls. These data indicate that both IgE and IgG sensitized guinea-pigs may develop bronchial hyperreactivity after a single allergen provocation. Repeated allergen exposure of IgE sensitized animals causes a gradual fading of the induced hyperreactivity despite the on-going presence of inflammatory cells in the airways, indicating a mechanism of reduced cellular activation.  相似文献   

11.
Stem cell factor (SCF) is directly involved in the induction of airway hyperreactivity during allergen-induced pulmonary responses in mouse models. In these studies, we examined the specific mediators and mechanisms by which SCF can directly induce airway hyperreactivity via mast cell activation. Initial in vitro studies with bone marrow-derived mast cells indicated that SCF was able to induce the production of bronchospastic leukotrienes, LTC(4) and LTE(4). Subsequently, when SCF was instilled in the airways of naive mice, we were able to observe a similar induction of LTC(4) and LTE(4) in the bronchoalveolar lavage (BAL) fluid and lungs of treated mice. These in vivo studies clearly suggested that the previously observed SCF-induced airway hyperreactivity may be related to the leukotriene production after SCF stimulation. To further investigate whether the released leukotrienes were the mediators of the SCF-induced airway hyperreactivity, an inhibitor of 5-lipoxygenase (5-LO) binding to the 5-LO activating protein (FLAP) was utilized. The FLAP inhibitor MK-886, given to the animals before intratracheal SCF administration, significantly inhibited the release of LTC(4) and LTE(4) into the BAL fluid. More importantly, use of the FLAP inhibitor nearly abrogated the SCF-induced airway hyperreactivity. In addition, blocking the LTD(4)/E(4), but not LTB(4), receptor attenuated the SCF-induced airway hyperreactivity. In addition, the FLAP inhibitor reduced other mast-derived mediators, including histamine and tumor necrosis factor. Altogether, these studies indicate that SCF-induced airway hyperreactivity is dependent upon leukotriene-mediated pathways.  相似文献   

12.
Although airway inflammation and airway hyperreactivity are observed after allergen inhalation both in allergic humans and animals, little is known about the mechanisms by which inflammatory cells can contribute to allergen-induced airway hyperreactivity. To understand how inflammatory cell infiltration can contribute to airway hyperreactivity, the location of these cells within the airways may be crucial Using a guinea pig model of acute allergic asthma, we investigated the inflammatory cell infiltration in different airway compartments at 6 and 24 h (i.e. after the early and the late asthmatic reaction, respectively) after allergen or saline challenge in relation to changes in airway reactivity (AR) to histamine. At 6 h after allergen challenge, a threefold (p < 0.01) increase in the AR to histamine was observed. At 24 h after challenge, the AR to histamine was lower, but still significantly enhanced (1.6-fold, p < 0.05). Adventitial eosinophil and neutrophil numbers in both bronchi and bronchioli were significantly increased at 6 h post-allergen provocation as compared with saline (p < 0.01 for all), while there was a strong tendency to enhanced eosinophils in the bronchial submucosa at this time point (p = 0.08). At 24h after allergen challenge, the eosinophilic and neutrophilic cell infiltration was reduced. CD3+ T lymphocytes were increased in the adventitial compartment of the large airways (p < 0.05) and in the parenchyma (p < 0.05) at 24h post-allergen, while numbers of CD8+ cells did not differ from saline treatment at any time point post-provocation. The results indicate that, after allergen provocation, inflammatory cell numbers in the airways are mainly elevated in the adventitial compartment. The adventitial inflammation could be important for the development of allergen-induced airway hyperreactivity.  相似文献   

13.
Allergic asthma is characterized by airway inflammation in response to chronic allergen exposure, resulting in remodeling of the airway wall accompanied by dysfunctional airway physiology. However, a link between the immune-inflammatory response to allergen and changes to airway structure and physiology has not yet been fully elucidated. Moreover, the impact of inhaled corticosteroids and beta(2)-agonists, the primary pharmacotherapy for asthma, on this process has not been completely evaluated. In this study, we employed a murine model of chronic exposure to a common environmental aeroallergen, house dust mite, to recapitulate the phenotype of clinical asthma. By examining the therapeutic effects of corticosteroid/beta(2)-agonist combination therapy with budesonide/formoterol (BUD/FORM) in this model of airway disease, we endeavored to determine the impact of BUD/FORM on lung inflammation, structure, and physiology. BUD/FORM was delivered either while allergen exposure was ongoing (concurrent therapy) or following the cessation of allergen exposure (postexposure therapy). Our results show that airway inflammation was substantially reduced in BUD/FORM-treated mice in the concurrent therapy group, whereas in the postexposure therapy group airway inflammation spontaneously resolved. In contrast, BUD/FORM was most effective in resolving several aspects of airway remodeling and bronchial hyperreactivity when delivered in conjunction with allergen withdrawal. This study demonstrates that although both BUD/FORM therapy and allergen avoidance independently reduce airway inflammation, only BUD/FORM therapy in conjunction with allergen avoidance can effectively reverse airway remodeling and bronchial hyperreactivity induced by chronic allergen exposure.  相似文献   

14.
Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice   总被引:10,自引:0,他引:10  
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness.  相似文献   

15.
P- and E-selectin are surface glycoproteins that mediate leukocyte rolling on the surface of endothelium in inflammation. We have cloned porcine P-selectin cDNA and generated a mAb, 12C5, with which to examine P-selectin expression by porcine aortic endothelial cells (PAEC) in comparison with that of E-selectin. Basal expression by PAEC of P-selectin was greater than that of E-selectin, whereas E-selectin expression was more prominently enhanced than that of P-selectin by stimulation with TNF-alpha or IL-1alpha. Both human or porcine IL-4 led to an increase in P-selectin expression, with kinetics that were delayed compared with those seen following stimulation with TNF-alpha or IL-1alpha, but IL-4 did not stimulate expression of E-selectin. When cells were stimulated with TNF-alpha in the presence of IL-4, we observed enhanced P-selectin expression with a parallel reduction in E-selectin expression. Finally, the increase in P-selectin expression due to human IL-4 was reduced in the presence of porcine but not human IFN-gamma. These observations show that E-selectin and P-selectin expression are differentially regulated in PAEC, and that IL-4 leads to a shift in the relative surface density of the two molecules toward P-selectin. The ability of porcine IFN-gamma to inhibit IL-4-induced P-selectin expression suggests that the balance between Th1 and Th2 cytokine production may determine the relative densities of the two selectins in chronic immune-mediated inflammation. Because the increased expression of P-selectin induced by human IL-4 was not inhibited by human IFN-gamma, this balance may be shifted toward P-selectin expression in porcine xenografts infiltrated by human lymphocytes.  相似文献   

16.
Airways are densely innervated by capsaicin-sensitive sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) receptors/ion channels, which play an important regulatory role in inflammatory processes via the release of sensory neuropeptides. The aim of the present study was to investigate the role of TRPV1 receptors in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological, and biochemical techniques using receptor gene-deficient mice. Inflammation was evoked by intranasal administration of Escherichia coli lipopolysaccharide (60 microl, 167 microg/ml) in TRPV1 knockout (TRPV1(-/-)) mice and their wild-type counterparts (TRPV1(+/+)) 24 h before measurement. Airway reactivity was assessed by unrestrained whole body plethysmography, and its quantitative indicator, enhanced pause (Penh), was calculated after inhalation of the bronchoconstrictor carbachol. Histological examination and spectrophotometric myeloperoxidase measurement was performed from the lung. Somatostatin concentration was measured in the lung and plasma with radioimmunoassay. Bronchial hyperreactivity, histological lesions (perivascular/peribronchial edema, neutrophil/macrophage infiltration, goblet cell hyperplasia), and myeloperoxidase activity were significantly greater in TRPV(-/-) mice. Inflammation markedly elevated lung and plasma somatostatin concentrations in TRPV1(+/+) but not TRPV1(-/-) animals. In TRPV1(-/-) mice, exogenous administration of somatostatin-14 (4 x 100 microg/kg ip) diminished inflammation and hyperreactivity. Furthermore, in wild-type mice, antagonizing somatostatin receptors by cyclo-somatostatin (4 x 250 microg/kg ip) increased these parameters. This study provides the first evidence for a novel counterregulatory mechanism during endotoxin-induced airway inflammation, which is mediated by somatostatin released from sensory nerve terminals in response to activation of TRPV1 receptors of the lung. It reaches the systemic circulation and inhibits inflammation and consequent bronchial hyperreactivity.  相似文献   

17.

Background

Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation.

Methods

Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures.

Results

In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice.

Conclusion

We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics.  相似文献   

18.
Mutant mice triply deficient in ICAM-1, E-selectin, and P-selectin did not develop the neutrophilic skin lesions that spontaneously arise in mutants doubly deficient in E-selectin and P-selectin. Thus, ICAM-1 is essential to skin disease resulting from endothelial selectin deficiency. During experimental dermatitis, acute neutrophil emigration was completely prevented in young mice deficient in both selectins (E/P and E/P/I mutants). However, older E/P mutants with spontaneous skin lesions displayed an endothelial selectin-independent pathway for acute neutrophil emigration. In contrast, emigration remained compromised in E/P/I mutants and CD18 mutants regardless of age or lesions. Experimentally induced chronic lesions elicited this pathway for acute emigration in young E/P mutants. Thus, an endothelial selectin-independent pathway for acute neutrophil emigration is induced in E/P mice by chronic inflammation at distant sites, and this pathway may contribute to skin disease resulting from endothelial selectin deficiency.  相似文献   

19.
The selectins, along with very late antigen-4 and CD44, have been implicated in mediating leukocyte rolling interactions that lead to joint recruitment and inflammation during the pathogenesis of rheumatoid arthritis. Previously, we showed that P-selectin deficiency in mice resulted in accelerated onset of joint inflammation in the murine collagen-immunized arthritis model. Here, we report that mice deficient either in E-selectin or in E-selectin and P-selectin (E/P-selectin mutant) also exhibit accelerated development of arthritis compared with wild type mice in the CIA model, suggesting that these adhesion molecules perform overlapping functions in regulating joint disease. Analyses of cytokine and chemokine expression in joint tissue from E/P-selectin mutant mice before the onset of joint swelling revealed significantly higher joint levels of macrophage inflammatory protein-1α and IL-1β compared to wild-type mice. IL-1β remained significantly increased in E/P-selectin mutant joint tissue during the early and chronic phases of arthritis. Overall, these data illustrate the novel finding that E-selectin and P-selectin expression can significantly influence cytokine and chemokine production in joint tissue, and suggest that these adhesion molecules play important regulatory roles in the development of arthritis in E/P-selectin mutant mice.  相似文献   

20.
Asthma represents a serious health problem particularly for inner city children, and recent studies have identified that cockroach allergens trigger many of these asthmatic attacks. This study tested the concept that asthma-like pulmonary inflammation may be induced by house dust containing cockroach allergens. An aqueous extract was prepared from a house dust sample containing endotoxin and high levels of cockroach allergens. BALB/c mice were immunized with the house dust extract (HDE) and received two additional pulmonary challenges. Bronchoalveolar lavage (BAL) eosinophil counts and eotaxin levels were significantly increased in immunized mice exposed to the HDE, whereas neutrophils were the predominant BAL inflammatory cell in the unimmunized mice. Kinetics studies in immunized mice demonstrated a peak pulmonary inflammatory response 48 h after the last challenge. The allergic response in this model was further confirmed by histological and physiological studies demonstrating a significant influx of eosinophils and lymphocytes in the peribronchial area, and severe airway hyperreactivity through whole-body plethysmography. The specificity of the response was established by immunizing with HDE and challenging with purified cockroach allergen, which induced pulmonary eosinophilia and airway hyperreactivity. Ab inhibition of eotaxin significantly inhibited the number of BAL eosinophils. These data describe a novel murine model of asthma-like pulmonary inflammation induced by house dust containing endotoxin and cockroach allergens and further demonstrate that eotaxin represents the principal chemoattractant for the recruitment of the pulmonary eosinophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号