首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Response of climate warming on tree-ring formation has attracted much attention during recent years. However, most studies are based on statistical analysis, lacking understanding of tree-physiological processes, especially in the mountainous regions of the Tibetan Plateau (TP). Herein, we firstly use an updated new version of the tree-ring process-based Vaganov-Shashkin model (VS-oscilloscope) to simulate tree-ring formation and its relationships with climate factors during the past six decades. Our analyses covered 341 sampled trees growing within elevations ranging from 2750 to 4575 m a.s.l. at five sampling sites across the TP. Simulated tree-ring width series are significantly (p < 0.01) correlated with actual tree-ring width chronologies during their common interval periods. Starting dates of tree-ring formation are determined by temperature at all five sampling sites. After the initiation of tree stem cambial activity, soil moisture content has a significant effect on tree radial growth. Ending dates of cambial activity are driven by temperature over the whole study region. Simulated results indicate differences between wide and narrow tree-rings are mostly induced by soil moisture content, especially during the first half of the growing season, when effects from temperature variations are minor. Interestingly, we detected significantly (p < 0.001) increased relative growth rates due to higher soil moisture content after the year 1985 at the five sampling sites. However, the variability of mean relative growth rates due to temperature is negligible before and after that. Based on the successful application of VS-oscilloscope modeling on the high-elevation tree stands on the TP, our study provides a new perspective on tree radial growth process and their varying relationships to climate factors during the past six decades.  相似文献   

2.
We present the longest high-elevation tree-ring width dataset in the Mediterranean reaching back to the 6th century CE. The network includes 101 living and 92 relict Pinus heldreichii Christ trees from four differently exposed sites in the 2100–2200 m a.s.l. elevation range of Mt. Smolikas in the Pindus Mountains in Greece. Though the sites were all sampled within a distance of <1 km, inter-site correlations are surprisingly low (r1550–2014 = 0.65–0.87), indicating site exposure might affect tree-ring formation. We here explore the consequence of exposure differences on the climate signals in an eastern Mediterranean treeline ecotone. Temporally stable growth/climate relationships reveal similar seasonal patterns among the four sites, but differences in signal strength. P. heldreichii growth at Mt. Smolikas is significantly controlled by temperature in April (r1951–2014 = 0.33–0.50) and precipitation in June-July (r1951–2014 = 0.23–0.42), which emphasizes the overall importance of an early growth onset and subsequent moisture conditions. The association between stem growth and April climate is strongest in the South-facing stand, supporting the significance of higher insolation rates at this thermally privileged site. Strongest summer precipitation signals are found in the NE-facing stand, where trees seem to benefit least from an early growth onset and where reduced meltwater supply may enhance the dependency on early summer precipitation. The significance of spring temperature on tree growth in all four sites constrains the emergence of a distinct summer precipitation signal in the Mt. Smolikas high elevation ecotone. Exploration of the site-specific influences on a new millennium-long tree-ring width dataset is an important step towards an improved understanding of long-term climate variability in the Eastern Mediterranean. Site-related differences in climate sensitivity in the high-elevation tree-ring network at Mt. Smolikas indicate that both temperature and precipitation during different seasons could potentially be reconstructed if distinct site exposures (S versus NE) are considered.  相似文献   

3.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

4.
Disruptions to an ecological system can have profound effects on the use of that system by various species. Such effects are often studied in terrestrial or aquatic species, but subterranean species are equally affected. To investigate how environmental perturbation affects the territory size of subterranean termites, a lattice model was designed based using seasonal and behavioral data to simulate the foraging behavior of the Formosan subterranean termite Coptotermes formosanus Shiraki. This computer model was then used to subject a given number of founding pairs (N = 20, 40, 60, 80, 100 at t = 0) to several levels of environmental perturbations (H = 0.0–1.0) once initial territory growth had reached saturation for a fixed area (t = 5). At lower values of H, territories were reduced to localized holdings randomly distributed over the entire model area. As H increased, the size of surviving territories increased while the total number of territories decreased. Analysis of territory size post-disruption (t = 10) indicated a trend towards larger overall territorial size when both N and H were high, whereas no such increase was seen when N was low. These results can be used to improve modeling systems to determine survival of subterranean populations in environmental disasters.  相似文献   

5.
《Aquatic Botany》2004,79(3):211-234
Common reed (Phragmites australis) is a prominent species in the upstream part of the eutrophic Scheldt estuary (Belgium, The Netherlands). From 1996 till 1998, seasonal growth dynamics of the species were studied in two monospecific stands subjected to different salinity regimes (seasonal means 1.6 and 13.3 PSU, respectively). We addressed the following questions: how are these reed vegetations affected by meteorological conditions and by the growth site, what are the important growth processes and what is the fate of the annually fixed carbon. A mathematical model was developed and calibrated using the data from the oligohaline site. Subsequent application of the model to the mesohaline stand required adaptation of parameters relating to the partitioning of resources and timing of growth initiation only. At their peak, the aboveground biomass was 587–1678 g DW m−2 at the 13.3 PSU site and 1116–2179 g DW m−2 (1.6 PSU); more than 60% of the biomass was located underground. In 1996, biomasses were 2–3 times lower than in the other 2 years, caused by a retarded growth initiation. Probably due to a lower temperature in early 1996, rhizome bud burst occurred more than 1 month later compared to the other years. In addition, growth initiation was several weeks later in the mesohaline site. This appeared mainly responsible for the large difference in maximal aboveground biomass between both stations. Architecture of the plants was also affected, with a higher shoot density (about 50% more shoots), better-developed root system (15% of total belowground biomass compared to 5%) and more, but smaller leaves at the higher salinity site. Notwithstanding large differences in aboveground biomass, annual growth was similar at both stations (154 and 132 mol C m−2 per year at the oligo- and mesohaline station, respectively). Primary production accounted for about 80% of all growth processes, rhizome remobilization for almost 20%, translocation of mass before sloughing of leaves accounting about 3%. Within a year, some 44% (oligohaline) and 36% (mesohaline) of new assimilates produced by photosynthesis accumulated as dead litter. The other part was respired by the plant itself, either to provide the energy for growth (23%) or maintenance costs (33–41% at the oligo- and mesohaline station, respectively). Calculated annual turnover rates of aboveground biomass, rhizomes and roots were 100, 62 and 73%, respectively.  相似文献   

6.
For both its climatic and ecological importance, Schrenk spruce (Picea schrenkiana) is a crucial tree species living at mid-altitude on the western area of the Tianshan Mountains. It plays a key role on understanding climatic change in the Tianshan Mountains in the past 500 years. However, whether the relationship between tree growth and limiting climate factors is stable over time is still not well-known. In this study, standard and residual chronologies of four 100-year age classes (AC1 < 110a, 110a < AC2 < 210a, 210a < AC3 < 310a and AC4 > 310a) were established for detecting divergence in climate–growth relationships as well as comparing low-frequency and high-frequency variations. The results show that climate can account for a high amount of variance in tree-ring width and higher climate sensitivity was detected in younger trees. Younger trees (<210a) exhibit significantly negative growth responses to mean monthly air temperature of previous June and positive relationship with total monthly precipitation of current April and May, while mean monthly air temperature of current March may inhibit growth of older trees (>210a). Tree-ring chronology statistics and response function reveal that the age-growth patterns are non-monotonic. Our results together with previous studies demonstrate that the age effects on tree-ring growth–climate response is attributed to a combination of genetic characteristics and site microclimate, which suggests that it is necessary to consider both age-dependent and species-specific climate responses when using tree-ring measurements as a proxy for valid climate reconstructions.  相似文献   

7.
The aim of this research is to investigate changes in the annual radial increment of Scots pine (Pinus sylvestris L.) in the vicinity of intensive (3–10 km) and moderate (11–20 km) industrial pollution during different growth periods (growth promotion, inhibition, and recovery). Low level of emission was beneficial for tree growth during the growth promotion period, and the annual radial increment in the zones of intensive and moderate pollution increased by approximately 15–25% and 10%, respectively. Severe loss was reported to forests during the growth inhibition period when nitrogen and sulphur dioxide emissions were 37–40 thousand (thou.) tons per year. About 40–45% tree radial increment loss was observed in the stands closest to the pollution source, and 15–20% loss was observed for the most distant stands. The stabilization of radial growth decrease and the beginning of recovery of damaged stands began in 1988–1992, when the annual amount of industrial emissions and environmental pollution were considerably reduced. The stabilization of radial growth and the initiation of recovery after pollution reduction were high for the most damaged stands. Their radial increment was stable and close to that of the control stands in 2000–2011. Stands with less damage growing further from the pollution source were recovered earlier, and their radial increment stabilized near the control increment in 1995–1999. The results of linear regression analysis demonstrated that the impact of pollution is different for stands growing at different distances from the plant, and the impact decreases with distance (R2 = 0.78 and R2 = 0.75, respectively; p < 0.05).  相似文献   

8.
The objectives of this study were to develop and assess a method of using tree ring measurements in standing pruned Pinus patula trees for modelling the knotty core of the pruned section of a tree and to assess variability in knotty core diameters in the tree stem. A total of 170 trees from 17 compartments on a wide variety of growth sites from the Mpumalanga escarpment in South Africa were selected and destructively sampled. We show that ring width measurements at breast height can be used to predict growth in the upper pruned section which in turn can be used to reconstruct the internal knotty core through the full pruned section of the log.Analysis of variation for the entire data set from ring width measurements showed that there was far greater variation in knotty core percentages (the percentage of diameter occupied by knotty core) between different compartments than within compartments. Within a tree, the knotty core percentages between three stem sections, 0.0–2.4 m, 2.4–4.8 m, and 4.8–7 m, differed significantly. As expected the knotty core percentages were found to increase from the bottom section (49.1%) to the top section (65.4%).A comparison of the actual measured knotty core size and the modeled knotty core size of a sub-sample of trees showed only a modest relationship (R2 = 0.62). Reasons for this might be variability in pruning quality, inaccurate pruning records, nodal swellings, and the methodology used to measure the actual knotty core sizes.Knowledge of knotty core sizes can be used as a decision aid in the forest and forest products industry.  相似文献   

9.
This study investigates Pb isotope ratios at low concentrations (parts per billion; ppb) in tree rings and soils in the Northern Athabasca Oil Sands Region (NAOSR), western Canada, to evaluate if: (1) climatic conditions influence on tree-ring Pb assimilation; and (2) such low Pb content allows inferring the regional Pb depositional history.Our results reflect the influence of winter snow cover and the importance of minimum temperature and precipitation in spring and summer on the bioavailability of Pb and its passive assimilation by trees in sub-arctic semi-humid climatic conditions. Winter conditions can influence the state of root systems that subsequently impacts the following growth period, while spring and summer conditions likely control microbial processes and water source, and may thus impact Pb assimilation by trees. Thus, the results of tree-ring Pb concentrations show interesting correlation with cumulated snow from November of the previous year to February (ρ = 0.53; P < 0.01; n = 36). Likewise, the 206Pb/207Pb ratios inversely correlate with minimum temperature from April to September (ρ = −0.67; P < 0.01; n = 40) and precipitation from May to August (ρ = −0.42; P < 0.01; n = 36). The isotopic results also suggest that the effects of climatic variations are superimposed by regional industrial Pb deposition: Western North American Aerosols (WNAA) and fugitive dust from the oil sands mining operations appear to be the most likely sources.Importantly, this study suggests that even at low Pb concentrations, tree-ring Pb isotopes are modulated by climatic conditions and potential input of regional and long-range transport of airborne Pb. These interpretations open the possibility of using Pb isotopes as an environmental tool for inferring the pollution history in remote regions, and improving our understanding of its natural cycle through the forest environment.  相似文献   

10.
This study aimed to investigate the applicability of dendrochronology for assessing the growth dynamics and response to climate variability and to estimate the aboveground carbon stock and carbon sequestration potential of Vitellaria paradoxa in southern Mali. Twenty stem disks were collected from three land-use types (parklands, fallows and protected areas) in Koutiala and Yanfolila districts. We combined a standard dendrochronological approach with biomass allometric equations to estimate the growth and carbon stocks. The results showed that V. paradoxa forms distinct growth ring boundaries but most of the disks from parklands did not successfully cross-date due to management operations like pruning. The tree-ring width showed a significant standardized coefficient of regression with rainfall (r2 = 0.66, p < 0.001) but insignificant correlation with temperature. One-way analysis of variance showed no significant difference (p > 0.05) for C-sequestration as well as for carbon stocks in aboveground biomass for both land-use types and sites. Mean values of the amount of C-sequestered in Yanfolila were 0.112 ± 0.0.065 Mg C ha−1 yr−1 in parklands, 0.075 ± 0.018 Mg C ha−1 yr−1 in fallows and 0.064 ± 0.028 Mg C ha−1 yr−1 in protected areas. In Koutiala, the values were 0.068±0.020 Mg C ha−1 yr−1 in the parklands and 0.053 ± 0.017 Mg C ha−1 yr−1 in the fallows. These results clearly indicate that dendrochronology can be applied to assess growth and carbon sequestration potential of V. paradoxa. These results also suggest that climate change could affect the growth and carbon sequestration potential of V. paradoxa. Given the limited size of our sample, figures on the amount of carbon are indicative calling for applying the tested approaches to larger samples and also to other tree species in West Africa.  相似文献   

11.
《Dendrochronologia》2014,32(2):144-152
Tree-ring research in Ireland has typically been dominated by Quercus species, particularly Quercus petraea and Quercus robur. Recent years have seen a greater focus on multi-species reconstructions in Ireland but, due to difficulties with the hardness of the wood, missing/pinched rings and fused stems, Taxus baccata has not been included in these investigations. Despite these difficulties, a 31-tree, 204-year T. baccata chronology was successfully constructed from Killarney National Park, southwest Ireland. The chronology exhibits promising dendroclimatological potential, with climatic responsiveness equivalent to that of the other major Irish tree taxa, including Quercus. The chronology shows the strongest relationship with May–June precipitation from Muckross House synoptic station (1970–2007; r = 0.521, p < 0.01) and Valentia Observatory (1941–2007; r = 0.545, p < 0.01). November–April temperatures also exhibited a strong relationship with the chronology post-1970 (r = 0.605, p < 0.01 for Muckross House, r = 0.567, p < 0.01 for Valentia Observatory), but this relationship is not time stable and breaks down for the pre-1970 Valentia Observatory record. The long-lived nature of T. baccata, the exceptional preservation of wood and rings in this hard softwood species, as well as its prominence in Irish archaeology, all point to the potential to expand this chronology both spatially and temporally, and demonstrate T. baccata's potential in multi-site and multi-species tree-ring studies in the region.  相似文献   

12.
A 50-year tree-ring δ18O chronology of Abies spectabilis growing close to the tree line (3850 m asl) in the Nepal Himalaya is established to explore its dendroclimatic potential. Response function analysis with ambient climatic records revealed that tree-ring δ18O is primarily governed by rainfall during the monsoon season (June–September), and the regression model accounts for 35% of the variance in rainfall. Extreme dry years identified in instrumental weather data are detected in the δ18O chronology. Further, tree-ring δ18O is much more sensitive to rainfall fluctuations than other tree-ring parameters such as width and density typically used in dendroclimatology. Correlation analyses with Niño 3.4 SST reveal time-dependent behavior of ENSO–monsoon relationships.  相似文献   

13.
《Aquatic Botany》2005,83(4):263-280
Leaf production and population dynamics of Zostera japonica were examined at three elevations of an intertidal transect in Seungbongdo Island on the western coast of Korea. Morphometrics, shoot density, biomass, leaf production, reproductive effort and environmental factors were monitored from October 2001 to October 2002. Z. japonica grew well in the lower intertidal zone from 0.2 to 1.0 m above mean chart datum. The upper station (St. 1) exhibited a finer sediment grain size and richer organic content than the middle (St. 2) and lower stations (St. 3). The size of shoots and leaves was significantly greater at St. 1 than at St. 3, whereas the rhizome internodes were longer at St. 3. Despite differences in morphological characteristics among three stations, seagrass biomass and shoot density were not significantly different among study sites. Shoot density, biomass, morphometrics and leaf productivity exhibited clear seasonal variations, which varied along with seasonal changes of water and air temperature. Leaf productivity measured by the clip and reharvest method was highest in September (4.3 g DW m−2 d−1) and lowest in February (0.2 g DW m−2 d−1). Reproductive shoots rapidly increased to maximum density along with the high water temperature in July to September. In the intertidal zone, Z. japonica exhibited faster vegetative growth on muddy sand than on sand, probably due to the difference in nutrient supply. The seasonal changes of water and air temperature were considered to play an important role in the seasonal leaf growth of Z. japonica.  相似文献   

14.
Many studies regarding growth in diameter at breast height (D) in trees suffer from several problems, including heteroscedasticity, temporal autocorrelation and very low statistical adjustments. In growth ring studies, growth models are sometimes omitted, presenting only a mean curve or smoothings, while studies that use models often do not address the above mentioned problems. For these reasons, this paper proposes a new approach to the classical modeling of D = f(t), where t is age (years), using the logarithmic transformation of the relative growth rate ln(1/D)(dD/dt) = ln f(D, A),where A is the asymptote of D based on the differential growth rate model of von Bertalanffy. High statistically significant adjustments for Cedrela odorata (ME = 65%, model efficiency, ME, an analogous to R2 but for non-linear regressions), and Juglans neotropica (ME = 78%) were obtained and met all regression assumptions. These equations were integrated to obtain D = f(t) for both species, followed by self and independent validation. Based on these equations, different life history and silviculture traits were calculated for both species. This procedure does not appear to have been previously used in the study of tree growth.  相似文献   

15.
We present a network of thirteen annual ring-width chronologies from high elevation whitebark pine (Pinus albicaulis Engelm.) sites in the western Canadian Cordillera in order to assess the dendroclimatic potential of this long-lived tree species. The temperature signal within the chronologies is complex and strongly influenced by diverging trends in the summer temperature and ring-width records from across the region. A first differences transformation of the tree-ring and temperature records illustrates a loss of frequency coherence in growth response to summer temperatures following reduced radial growth in the 1950s. Prior to reduced growth, we note a positive association with summer temperatures for both first differenced (rd = 0.60) and traditional (r = 0.50) records. Following reduced growth, the association at first differences is maintained (rd = 0.49) whereas there is a change in the lower frequency component of tree growth response to summer temperatures (r = ?0.34). We suggest the cause of this reduced temperature sensitivity is related to the interaction between diurnal temperature and cloud cover patterns, the hydrological regime of snowpack, and site conditions which have been amenable to the initiation of moisture stress during the latter half of the 20th century. Reduced radial growth is coincident with the arrival of white pine blister rust (Cronatium ribicola J.C. Fisch. ex Raben) into the study region which suggests this infestation may be related to the observed reduction in radial growth. Whitebark pine has considerable potential for the field of dendroclimatology. Unfortunately, the decline of the species due to the combined effects of climate change, white pine blister rust, mountain pine beetle (Dendroctonus ponderosae Hopk.), and forest fire exclusion practices indicate this potential may remain unfulfilled.  相似文献   

16.
《Aquatic Botany》2007,87(2):116-126
Zostera marina distribution is circum-global and tolerates a wide range of environmental conditions. Consequently, it is likely that populations have adapted to local environmental conditions of light, temperature and nutrient supply. We compared Z. marina growth dynamics over a 2-year period in relation to environmental characters at Jindong Bay, South Korea and Yaquina Bay, Oregon, USA. Water temperature in Jindong Bay showed stronger seasonal variation (summer–winter ΔT = 20 °C) than in Yaquina Bay (summer–winter ΔT < 5 °C). Underwater irradiance in Jindong Bay exhibited a winter maximum, while in Yaquina Bay underwater light exhibited a summer maximum. Integrated annual underwater irradiance during 2003 was 2200 and 1200 mol photons m−2 year−1 in Korea and Oregon, respectively. Z. marina shoot density, biomass and integrated production were not significantly different between the two study sites. Seasonal Z. marina growth in Jindong Bay appeared to be controlled by temperature and light, while the growth pattern in Yaquina Bay suggested light regulation. Several seagrass parameters were correlated to phosphate concentrations, even though nutrients did not appear limiting. Despite differences in environmental factors, relative growth rates and temporal growth dynamics between study sites, integrated annual leaf production was quite similar at 335 and 353 g DW m−2 year−1 in the Jindong and Yaquina Bay study sites. We suggest that Z. marina net productivity is acclimated to the local environmental conditions and may be a general characteristic of temperate seagrass populations.  相似文献   

17.
This research aimed to evaluate spatio-temporal growth variability of three Pinus species viz. Pinus kesiya (Khasi pine), Pinus merkusii (Merkus pine) and Pinus wallichiana (Blue pine) along with the existence of species differentiation among the taxa in northeast India. Several statistical analyses were used, namely Pearson correlation and multivariate approaches involving UPGMA Cluster Analysis; ordination methods by Principal Component Analysis (PCA) and Non-metric multidimensional scaling (NMDS) on tree-ring width chronologies from 13 sites. The tree growth-climate relationships were assessed with both correlation and bootstrap response function using regional climate datasets of each sampling site prepared by averaging the nearest grid points of 0.5 × 0.5° of CRU TS-2.1 climate dataset. Pronounced species differentiation in the growth pattern among the three Pinus taxa was inferred. The observed spatio-temporal variability revealed inter-species tree growth variations were not uniform suggesting no common factor influenced the radial tree growth in this region, which may be related to anthropogenic impact or non-climatic factors. The tree growth-climate relationship showed that climatic factors limiting the radial growth of Pine are mostly similar for intra-species but diverse in inter-species. This study is extremely relevant in terms of species and site selection for the long-term climate reconstruction and forest management in the Northeast Himalaya.  相似文献   

18.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

19.
《Aquatic Botany》2006,84(4):263-280
Leaf production and population dynamics of Zostera japonica were examined at three elevations of an intertidal transect in Seungbongdo Island on the western coast of Korea. Morphometrics, shoot density, biomass, leaf production, reproductive effort and environmental factors were monitored from October 2001 to October 2002. Z. japonica grew well in the lower intertidal zone from 0.2 to 1.0 m above mean chart datum. The upper station (St. 1) exhibited a finer sediment grain size and richer organic content than the middle (St. 2) and lower stations (St. 3). The size of shoots and leaves was significantly greater at St. 1 than at St. 3, whereas the rhizome internodes were longer at St. 3. Despite differences in morphological characteristics among three stations, seagrass biomass and shoot density were not significantly different among study sites. Shoot density, biomass, morphometrics and leaf productivity exhibited clear seasonal variations, which varied along with seasonal changes of water and air temperature. Leaf productivity measured by the clip and reharvest method was highest in September (4.3 g DW m−2 d−1) and lowest in February (0.2 g DW m−2 d−1). Reproductive shoots rapidly increased to maximum density along with the high water temperature in July to September. In the intertidal zone, Z. japonica exhibited faster vegetative growth on muddy sand than on sand, probably due to the difference in nutrient supply. The seasonal changes of water and air temperature were considered to play an important role in the seasonal leaf growth of Z. japonica.  相似文献   

20.
An Acinetobacter species was isolated and found to be able to grow on crude oil n-alkanes and solid alkanes at room temperature as the sole carbon source. The growth of the isolate on n-heneicosane dissolved in non-biodegradable pristane has been studied. A kinetic model of the growth of microorganism on the hydrophobic substrate dissolved in non-biodegradable oil droplet assuming direct contact of cell with oil droplet was developed and validated with a model system of crude oil biodegradation. The model was focused on the substrate transport to the cell being contact with the surface of droplet. The high value of saturation constant of n-heneicosane, Ks = 0.086 kg m−3, and the maximum specific growth rate, μm = 0.60 h−1, were obtained. The transport limitation was considered and estimated. The high value of attached cell fraction was reasonable to explain the observed growth rate by the direct contact model and varied with time till it reached a plateau at the stationary growth phase. By considering the direct contact of the cells with the surface of pristane and the transport of n-heneicosane to the cell, the degradation of hydrophobic substrate in the oil phase could be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号