首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike the primitive type of spermatozoon found in most polychaetes, the spermatozoon of Autolytus has a bilateral symmetry with elongated nucleus, and the mitochondria surround the posterior part of the nucleus. A rather large disk-shaped acrosome is situated along one side of the anterior part of the nucleus. From the anterior margin of the distal centriole emerge long striated rootlets, which run along the nuclear envelope to the anterior part of the nucleus. The spermatozoon of Chitinopoma serrula has an elongated, slightly bent nucleus, a thimble-like acrosome apically on the anterior surface of the nucleus, and an elongated middle piece containing 4 rod-like mitochondria developed from spherical mitochondria surrounding the basal part of the tail flagellum. In the spermatozoon of Capitella capitata, both nucleus and middle piece are elongated compared to the primitive type. The large and conical acrosome is placed asymmetrically at the nucleus and consists of an acrosomal vesicle and subacrosomal substance. The greater part of the middle piece forms a collar around the initial part of the tail flagellum. The cytoplasm of the collar contains granular material. One or two small mitochondria lie around the 2 centrioles at the base of the nucleus.

These types of spermatozoa represent early steps in the evolution of modified spermatozoa combined with changed biology of reproduction. The modified spermatozoa are larger than the primitive ones.  相似文献   

2.
Sperm ultrastructure and spermiogenesis of the three bivalve species Musculus discors, Nucula sulcata, and Dreissena polymorpha have been studied. During spermatid differentiation in Musculus discors and Nucula sulcata the nucleus attains an elongated rod-like shape. The spermatozoon from Nucula sulcata was found to have a cup-shaped acrosome and five mitochondria surrounding two centrioles in the middle piece. The spermatozoa from Musculus discors has a long complex acrosome. From the distal centriole striated processes extend and attach to the plasma membrane. The spermatozoon of the fresh water species Dreissena polymorpha agrees in all main features with those of other invertebrate groups with external fertilization. It is thus of the primitive type with barrel-shaped nucleus and four to five mitochondria1 spheres in the middle piece. The acrosome is a prominant, complex structure at the apex of the mature spermatozoon. A comparison of sperm ultrastructure among bivalves indicates that there is a certain correlation between the evolution of the elongated sperm nucleus and large, yolk-rich eggs. In species with an elongated sperm nucleus the increased egg size has often led to a lecithotrophic or direct development. The elongated nucleus is a slight modification of the primitive type. There is a great variation in acrosome structure among bivalve spermatozoa, reflecting diverging functional demands at fertilization of the eggs.  相似文献   

3.
4.
The spermatozoon and some spermatid stages of Siboglinum (Pogonophora) have been examined by light and electron microscopy. In the spermatozoon a helical acrosome, a helical nucleus and a “body” with axonema follow each other in normal sequence. Head and tail are joined by a very short neck region containing two modified centrioles. The posterior portion of the nucleus is surrounded by a mitochondrial sheath consisting of three tightly wound mitochondrial helices. In the main portion of the tail the 9+2 unit is sorrounded by a granular sheath of dense material. In the neck region a centriole adjunct develops into a dense substance containing about nine rods. At an early stage, when the centriolar apparatus and flagellum become associated with the nucleus, three large mitochondria with fairly regular cristae are seen at the base of the nucleus. A well developed Golgi apparatus is present in early stages. Rows of microtubules are observed encircling the spermatid nucleus. Compared with the primitive type of spermatozoon the pogonophore sperm shows elongated and specialized nucleus, acrosome and mitochondria. It is concluded that the ancestral form must have had a fairly primitive spermatozoon and that evolution has proceeded towards a modified sperm with complicated spiral structure in connection with the evolution of a modified biology of fertilization, viz. specialized spermatophores. It is not known how the spermatophore discharges the spermatozoa nor how the spermatozoa find their way to the eggs. Two kinds of sperms are produced in the gonads of Siboglinum. The atypical sperm is smaller than the typical one.  相似文献   

5.
The spermatozoa of Petrobius and Lepisma share a few general insect features (filamentous shape, two mitochondria, compact acrosome vesicle, bilateral symmetry) but differ fundamentally with regard to specializations. In Petrobius, a long coiled acrosome, a coiled nucleus, and a “body” with axonema, two mitochondria, and a pair of lateral bodies follow each other in normal sequence. In Lepisma the acrosome is a small vestige in the spoon-shaped anterior end, the centriole is dislocated anteriorly, and nucleus, two mitochondria and axonema run like parallel filaments through most of the spermatozoon. The centriole adjunct develops into a postnuclear body in Lepisma but forms a pair of complicated “lateral bodies” in Petrobius. It is concluded that ancestral forms must have had fairly primitive spermatozoa and that specialization has proceeded independently within each evolutionary line.  相似文献   

6.
通过透射和扫描电镜观察了白肛海地瓜(Acaudina leucoprocta)的精子发生过程及其形态结构,揭示了白肛海地瓜精子发生时期一系列变化,其精子发生分为精原细胞、初级精母细胞、次级精母细胞、精细胞、成熟精子5个时期。精原细胞体积最大。精母细胞染色质开始凝集。精细胞前顶体颗粒形成。白肛海地瓜成熟精子的超微结构为原生型,由头部、中部、尾部组成,头部圆形,最前端为顶体,核染色质凝集成团块状,中部是线粒体和中心粒复合体融合成1个超大结构,尾部长约60μm,尾部鞭毛横切面为典型的"9+2"型结构。  相似文献   

7.
余红卫 《动物学杂志》2010,45(6):101-105
应用透射电镜技术观察了中国绿螂(Glaucomya chinensis)精子的超微结构。精子为典型的原生型,包括头部、中段和尾部三部分。头部由顶体和细胞核组成。顶体呈倒"V"字型。细胞核呈长圆柱形,没有核前窝,具有核后窝。中段由4个线粒体环绕中心粒而成。尾部细长,为典型的"9+2"结构。文中还讨论了双壳类精子形态结构的种属间差异。  相似文献   

8.
Summary Spermatogenesis ofSchizomus palaciosi occurs in cysts in paired tubular testes located ventrally in the opisthosoma. Only few germ cells comprise one cyst. In early spermiogenesis an acrosomal complex composed of a spherical vacuole and a short acrosomal filament is established opposite of which a 9×2+3 flagellum emerges from a flagellar tunnel. The latter, however, is only a short-lasting structure. A manchette of microtubules surrounds nucleus and part of the acrosomal vacuole. The alterations in the arrangement of the microtubules during spermiogenesis are described. The spermatid finally is an elongate cell with a slender acrosomal vacuole on top of the helical nucleus. A deep implantation fossa filled with dense material is encountered. The acrosomal vacuole is accompanied by an intricate paracrosomal lattice structure not known at present of otherArachnida. This structure disappears during final spermiogenesis. The acrosomal filament (perforatorium) reveals filamentous subunits arranged in a regular pattern. Large ovoid mitochondria do not establish a distinct middle piece. Finally the elongate spermatid is coiled to form the mature spherical spermatozoon.The results are discussed under functional and taxonomical aspects.  相似文献   

9.
The mature spermatozoon of Admetus pomilio is a spherical cell containing nucleus and tightly coiled flagellum. In early spermatids the Golgi apparatus forms the acrosomal vesicle and at the opposite side the distal centriole gives rise to the axonemal complex of the sperm tail. As the nucleus elongates, chromatin forms twisted filaments and the spermatid nucleus takes on a helical form. Microtubules are juxtaposed with the nucleus envelope, which is separated from a central chromatin mass by an electron lucid region. A long perforatorium, located on the border of the chromatin mass, runs helically in the nucleus from the centriolar region to subacrosomal space. During tail elongation, the anterior part of the axoneme is surrounded by a long, spiral mitochondrial sheath. In the late spermatid, chromatin filaments appear twisted and become aggregated. The nucleus and flagellum undergo further contortions in which the nucleus coils and the flagellum winds up into the body of the cell and coils in a regular fashion. The mitochondrial sheath surrounds about 2/3 of the 9 + 3 axoneme. These features of spermatid ultrastructure resemble those in the primitive Liphistiomorpha.  相似文献   

10.
We studied the ultrastructure of spermatogenesis and spermatozoa in the northern quahaug, the clam Mercenaria mercenaria. Spermatogenetic cells gradually elongate. Mitochondria gradually fuse and increase in size and electron density. During spermatid differentiation, proacrosomal vesicles migrate towards the presumptive anterior pole of the nucleus and eventually form the acrosome. The spermatozoon of M. mercenaria is of a primitive type. It is composed of head, mid-piece, and tail. The acrosome shows a subacrosomal space with a short conical contour. The slightly curved nucleus of the spermatozoon contains fine-grained dense chromatin. The middle piece consists of a centriolar complex which is surrounded by four mitochondria. The flagellum has a standard “9 + 2” microtubular structure. The ultrastructure of spermatozoa and spermatogenesis of M. mercenaria shares a number of features with other species of the family Veneridae. M. mercenaria may be a suitable model species for further investigations into the mechanisms of spermatogenesis in the Bivalvia.  相似文献   

11.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

12.
In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves. Received: 29 September 1998 / Received in revised form: 20 May 1999 / Accepted: 14 June 1999  相似文献   

13.
Å. Franzén 《Zoomorphology》1984,104(3):140-146
Summary Differentiation of spermatids to mature spermatozoa in the bryozoan Tubulipora liliacea was studied by transmission electron microscopy. The spermatozoon of Tubulipora is of a filiform, modified type, and has evolved from the primitive type as an adaptation to a specialized biology of fertilization. The head of the spermatozoon consists of a small, conical acrosome capping an elongated, cylindrical, anteriorly tapering nucleus. A basal invagination in the nucleus contains the proximal portion of the axoneme and a dense attachment matrix. The flagellar axoneme has the typical 9+2 structure. Four elongated rodshaped mitochondria with typical cristae surround the axoneme in the cylindrical middle piece. Granular electron-dense material is accumulated in the form of four columns alternating with four long cylindrical mitochondria. The mitochondrial middle piece is separated externally from the tail region by an involution of the plasma membrane. The tail region contains a cytoplasmic sheath with accessory fibers surrounding the axoneme. Nine outer, coarse fibers extend posteriorly paralleling the nine doublets of the axoneme. The coarse fibers develop from electron-dense plate-like structures associated with the doublets of the axoneme. A characteristic feature in spermiogenesis is that spermatozoa develop in tetrads. There seem to be significant differences in spermatozoan ultrastructure between the three bryozoan classes Stenolaemata, Gymnolaemata, and Phylactolaemata. The differences indicate different lines of evolution of fertilization biology in these groups.Abbreviations used in the figures a acrosome - av acrosomal vesicles - ax axoneme - c coarse fiber - d electron dense rod - m mitochondrion - mp middle piece - Scale bars=0.5 m - mt microtubule - n nucleus - ne nuclear envelope - p nuclear protrusion - pm plasma membrane - t tail  相似文献   

14.
The giant aflagellate spermatozoa of P. quadrioculatum are composed of two different parts: a thicker head piece and a more slender tail piece. In the head there exist a large elongated nucleus and an elongated mitochondrial derivative situated in a groove-like cavity of the nucleus. In mature spermatozoa the nuclear material is arranged in many small membrane bounded areas. Both structures, nucleus and mitochondrial derivative, are spirally coiled. The outer part of the membrane in the mitochondrial derivative forms many loop-like foldings. Both organelles continue to the tail in form of two small, helically coiled ribbons; the nucleus is anchored within the mitochondrial derivative by an electron-opaque process. A sheath of spirally-orientated cortical microtubules starting from the tip of the head runs to the tip of the tail under the cell membrane. In addition, a second sheath of tubules occurs in the tail region, these tubules also run parallel to each other, but in the opposite direction to the microtubules of the outer sheath.The possible relations between the structures observed and the motility of the spermatozoa are discussed; in addition, some phylogenetic comments are attempted.Abbreviations c — cerebrum - com — cortical microtubules - cop — copulatory organ - fm — foldings of the mitochondrial membrane - l — lattice - mid — mitochondrial derivative - mt — microtubules - n — nucleus - ne — nuclear envelope - ph — pharynx - pn — protonephidium - rp — ribbon-like nuclear process - te — testis - tt — testis - tt — tip of the tail - vi — vitellarium - vs — vesicula seminalis  相似文献   

15.
We describe chromatin condensation and acrosome development during spermiogenesis of Ensis ensis. The overall shape of the mature spermatozoon corresponds to the primitive type. The nucleus is oval and on its superior pole there is an elongated acrosome; the middle piece contains four mitochondria around the centriolar complex. The condensation of the nuclei seems to occur in three steps: first the diameter of chromatin fibers increases slightly from 17 to 20 nm; second, in midspermatids fiber pairs coalesce; and third, the coalescence continues by addition of other fibers until the nuclei become highly compacted. Chromatin changes are related with nuclear protein composition. Small proacrosomal vesicles show two regions of different electron density. At a later stage they fuse to give a single, spherical vesicle in round spermatids, which migrates to the upper pole and transforms into a tapered acrosome (18 μm long) with a central channel filled with finely fibrous material. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Summary Developing spermatids and mature spermatozoa from the isopod, Oniscus asellus and the amphipod, Orchestoidea sp. have been examined with the light microscope and the electron microscope and have been found to have similar morphologies. As spermiogenesis proceeds the nucleus migrates to one pole of the spermatid at which point an acrosome, contiguous rod, and cross-striated tail develop. The acrosomal vesicle elongates to a cone-shaped, mature acrosome lying at the apex of a cross-striated tail and nucleus which are situated at approximate forty-five degrees to each other. The cross-striated tail originates as an evagination of the spermatid plasma membrane near the acrosomal vesicle. The tail eventually grows to lengths of four to five hundred microns. The mature, tail-like appendage is cross-striated at major 750 to 800 Å, and minor 125 to 150 Å, periodicities. When observed in vitro, mature sperm of both species appear non-motile.Possible homologies of this unusual spermatozoon with other types of spermatozoa are made and it is concluded that: 1) isopod and amphipod spermatozoa should be classified as non-flagellate; 2) the cross-striated tail, previously thought to be a flagellum, is a non-motile structure associated in development and possible function with the acrosome; and 3) the rodlike structure contiguous with the acrosome is similar to perforatoria described in some vertebrate sperm.Supported by U.S.P.H.S. Grant No. NB-06285 and Training Grant No. 5-Tl-GM-202. — The author wishes to express his grateful appreciation for the technical assistance given by Miss Ann Barnett during the course of this investigation.  相似文献   

17.
Early spermatids of the onychophoran Peripatopsis capensis are spherical cells with a centrally located nucleus, numerous mitochondria, Golgi complexes, microtubules and two centrioles. During spermiogenesis, Golgi vesicles migrate to one side of the cell where they form a tight aggregate, which is later shed. The mature spermatozoon has no acrosome. Several mitochondria fuse to form a middle piece containing three large mitochondria. Nucleus and middle-piece elongate, presumably under the influence of helically twisted microtubules. Outside this set of microtubules a continuous layer of endoplasmic reticulum cisternae is formed which separates the interior portion of the cell from an external cytoplasmic rim, which is later shed. Outside the 9 + 2 complex, the tail presents nine accessory microtubules, and a peripheral layer of microtubules beneath the plasma membrane. The enforcement of the tail structure may be related to the fertilization biology of this animal, which is by “hypodermal” impregnation.  相似文献   

18.
Cell volume reduction is one of the most distinct morphological changes during spermiogenesis and may be largely attributable to water efflux from the cell. A strong candidate for a water efflux route, aquaporin 7 (AQP7), which is a water channel, was studied immunohistochemically in the rat testis. Immunoreactivity was restricted within the elongated spermatids, testicular spermatozoa, and residual bodies remaining in the seminiferous epithelium. Weak but distinct immunoreactivity was first observed in the cytoplasmic mass of the spermatid at step 8 of spermiogenesis. The Golgi-like apparatus became steadily immunoreactive at step 10. The plasma membrane covering the cytoplasmic mass showed strong immunoreactivity after step 16. At this step, the middle piece of the tail also showed immunoreactivity at the portion protruding into the lumen. The whole head and distal tail, where the elongated spermatid had only a limited amount of cytoplasm, showed no immunoreactivity throughout spermiogenesis. After spermiation, the immunoreactivity of AQP7 remained at the middle piece and in the cytoplasmic droplet in the testicular spermatozoon. The present observations suggest that AQP7 contributes to the volume reduction of spermatids, since this water channel protein is localized on the plasma membrane covering the condensing cytoplasmic mass of the elongated spermatid, and since the seminiferous tubule fluid is hypertonic.  相似文献   

19.
Spermatogenesis and sperm ultrastructure were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in the longidorid Xiphinema theresiae. All germ cell stages, except spermatogonia, are present in the testes of young adult males. The nonflagellated, slightly elongated sperm displays little intraspecific variation and, although never polarized into a head and tail region, has a remarkably precise form, with a high degree of internal organization. Incipient fingerlike pseudopodia appear in the young spermatid and increase to such an extent that the adult sperm has a conspicuous “woolly” appearance. Microfilament bundles encircle the perinuclear mitochondria in the spermatid, and seem to be closely associated with the evaginated plasma membrane, especially in the spermatozoon. A large nucleus with nuclear envelope is prominent in the spermatocyte, but the envelope is absent in the young spermatid. Mitochondria are present in all germ cell stages and undergo certain morphological changes (e.g., in size and number, presence or absence of cristae), as well as changes in intracellular movements during spermatogenesis. Membranous organelles are prominent in the spermatocyte, but disappear in the older spermatid. Annulate lamellae and a residual body (i.e., cytophore) are conspicuous in the spermatocyte and spermatid, respectively; the spermatozoon clearly lacks a refringent body (i.e., acrosome).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号