首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. S. Kim  Y. Tsuda 《Molecular ecology》2012,21(21):5374-5385
The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector‐borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector‐borne pathogens. Avian Plasmodium parasites are multihost mosquito‐borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)‐based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and Cpipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study.  相似文献   

2.
Vector‐borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito‐associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next‐generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human‐impacted landscapes that may ultimately affect vector‐borne disease risk.  相似文献   

3.
1. The loss of intact forest via logging can influence vector‐borne disease dynamics in part by altering the abundance or diversity of mosquito species. Using an experimental field approach, we characterised how two types of logging (clearcut and repeat‐entry shelterwood) affected temperate forest mosquito abundance and diversity in southwestern Virginia. 2.From May to September in 2008–2010, infusion‐baited gravid traps were used to collect ovipositing female mosquitoes across experimental forest plots that varied in logging treatment. Of the 29 680 collected adult female mosquitoes, the three dominant taxa captured were Aedes triseriatus (55%), Aedes japonicus (21%), and Culex pipiens/restuans (20%). 3. Logging treatment had a significant effect on the overall number of female mosquitoes caught per trap night, with lower average abundance of females on both logged treatments relative to two types of unlogged, control plots. When the three most abundant mosquito species were examined separately, logging treatment significantly influenced the abundance of both Aedes species, but did not significantly affect C. pipiens/restuans abundance. 4. Logging treatment did not influence the richness or diversity of mosquito species captured in gravid traps. However, logging treatment significantly altered the multivariate community composition of captured mosquitoes, an effect probably mediated by differential species‐specific impacts of logging on abundance. 5. Overall, the results of the present study suggest that the risk of arboviruses transmitted by container‐breeding Aedes species may be lower following a logging event in Appalachian forests because of reduced A. japonicus and A. triseriatus abundance with logging.  相似文献   

4.
The U.K. has not yet experienced a confirmed outbreak of mosquito‐borne virus transmission to people or livestock despite numerous autochthonous epizootic and human outbreaks of mosquito‐borne diseases on the European mainland. Indeed, whether or not British mosquitoes are competent to transmit arboviruses has not been established. Therefore, the competence of a local (temperate) British mosquito species, Ochlerotatus detritus (=Aedes detritus) (Diptera: Culicidae) for transmission of a member of the genus Flavivirus, Japanese encephalitis virus (JEV) as a model for mosquito‐borne virus transmission was assessed. The JEV competence in a laboratory strain of Culex quinquefasciatus (Diptera: Culicidae), a previously incriminated JEV vector, was also evaluated as a positive control. Ochlerotatus detritus adults were reared from field‐collected juvenile stages. In oral infection bioassays, adult females developed disseminated infections and were able to transmit virus as determined by the isolation of virus in saliva secretions. When pooled at 7–21 days post‐infection, 13% and 25% of O. detritus were able to transmit JEV when held at 23 °C and 28 °C, respectively. Similar results were obtained for C. quinquefasciatus. To our knowledge, this study is the first to demonstrate that a British mosquito species, O. detritus, is a potential vector of an exotic flavivirus.  相似文献   

5.
We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water‐level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap‐nights and ~4,000 pre‐imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water‐level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre‐imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control.  相似文献   

6.
Nearly 30% of emerging infectious disease events are caused by vector‐borne pathogens with wildlife origins. Their transmission involves a complex interplay among pathogens, arthropod vectors, the environment and host species, and they pose a risk for public health, livestock and wildlife species. Examining habitat associations of vector species known to transmit infectious diseases, and quantifying spatio‐temporal dynamics of mosquito vector communities is one aspect of the holistic One Health approach that is necessary to develop effective control measures. A survey was conducted from May to August, 2010 of the abundance and diversity of mosquito species occurring in the mixed‐grass prairie habitat of the Smoky Hills of Kansas. This region is an important breeding ground for North America's grassland nesting birds and, as such, it could represent an important habitat for the enzootic amplification cycle of avian malaria and infectious encephalitides, as well as spill‐over events to humans and livestock. A total of 11 species, belonging to the three genera Aedes, Anopheles, and Culex, was collected during this study. Aedes nigromaculis, Ae. sollicitans, Ae. taeniorhynchus, Culex salinarius, and Cx. tarsalis accounted for 98% of the collected species. Multiple linear regression models suggested that mosquito abundances in the grasslands of the central Great Plains were explained by meteorological and environmental variables. Temporal dynamics in mosquito abundances were well supported by models that included maximum and minimum temperature indices (adjusted R2= 0.73). Spatial dynamics of mosquito abundances were best explained by a model containing the following environmental variables (adjusted R2=0.37): ground curvature, topographic wetness index, distance to woodland, and distance to road. The mosquito species we detected are known vectors for infectious encephalitides, including West Nile virus. Understanding the microhabitat characteristics of these mosquito species in a grassland ecosystem will aid in the control and management of these disease vectors.  相似文献   

7.
In Port‐au‐Prince, Haiti, the status of insecticide resistance has not recently been evaluated for Aedes aegypti (L) and Aedes albopictus (Skuse) populations. No prophylactics exist for dengue, so prevention is only through vector control methods. An earthquake occurred in Haiti on January 12, 2010, with a magnitude of 7.0 Mw that devastated the area. Dengue became a major concern for the humanitarian relief workers that entered the country. Bottle bioassays were conducted in the field on adult mosquitoes reared from larvae collected from the grounds of the U.S. Embassy and from an adjacent neighborhood in eastern Port‐au‐Prince, Haiti. At the CDC, Fort Collins, CO, bioassays, molecular, and biochemical assays were performed on mosquitoes reared from field‐collected eggs. A small percentage of the population was able to survive the diagnostic dose in bioassays run in Haiti. Mosquitoes tested at the CDC demonstrated no phenotypic resistance. A variety of factors could be responsible for the discrepancies between the field and lab data, but temperature and larval nutrition are probably most important. Knowledge of localized resistance and underlying mechanisms helps in making rational decisions in selection of appropriate and effective insecticides in the event of a dengue outbreak.  相似文献   

8.
Bacterial symbionts of insects have been proposed for blocking transmission of vector‐borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross‐colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross‐colonizing other sugar‐feeding insects of phylogenetically distant genera and orders. PCR, real‐time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross‐colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid‐ or chromosome‐encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross‐colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host‐specific biological characteristics. This versatility is an important property for the development of symbiont‐based control of different vector‐borne diseases.  相似文献   

9.
Pathogens of medical or veterinary significance that are transmitted by mosquitoes (Diptera: Culicidae) are (re‐)emerging in Europe [e.g. West Nile virus (WNV), Dirofilaria nematodes]. Little is known about the spatiotemporal abundances of mosquito species in Switzerland. Therefore, mosquito population dynamics were investigated, focusing on areas of risk for sylvatic or synanthropic transmission, such as natural sites and suburban sites on either side of the Alpine crest. Repeated collections were made using Centers for Disease Control (CDC) traps, juvenile sampling and ovitrapping. A total of 122 831 mosquito specimens of 21 taxa were identified. Levels of mosquito species richness were similar at suburban sites and in natural zones in Switzerland. Mosquito abundances and seasonality were analysed with generalized linear mixed models based on 382 CDC trap samples (29 454 females) and revealed Aedes annulipes/cantans, Aedes geniculatus, Aedes japonicus, Aedes sticticus, Aedes vexans, Coquillettidia richiardii and Culex pipiens/torrentium as the dominant species overall. Abundances of these species were season‐dependent in most cases. There was an effect of site with regard to abundance (higher in natural zones), but not with respect to seasonality. Together with data on vector competence and the host preferences of different species, the present data contribute to assessments of risk for pathogen transmission. For example, both natural and suburban environments seem feasible as sites for amplification cycles of WNV and transmission to mammals.  相似文献   

10.
This study updates the diversity, distribution, and seasonal trends of mosquitoes in a western region of Spain, assesses ecological determinants of Culex pipiens s.l., and determines form composition of Cx. pipiens s.s. populations. A total of 1,495 mosquitoes of 16 species was collected during 2012–2013, of which Cx. pipiens s.l. and Cx. theileri were the most abundant. Five new records for An. maculipennis s.s., Orthopodomyia pulcripalpis, Aedes (Ochlerotatus) punctor, Cx. europaeus, and Cx. modestus were found for this region. Cx. pipiens density varied across weather and habitat patterns, correlating positively with high temperatures and with a preference for urbanized areas and rural areas within a proximity of ovine farms. Moreover, molecular identification by CQ11FL was performed in 467 Cx. pipiens s.s., detecting both pipiens (66%) and molestus (8.4%) forms coexisting in different habitats (urban, peri‐urban and rural) aboveground with a high degree of hybridization (25.7%). The abundance of Cx. pipiens in urban areas and farms, with the presence of hybrids, may increase their capacity to act as bridge vectors for the transmission of arboviral infections. These data will be helpful for further implementation of entomological programs focused on risk assessment for arboviruses or other mosquito‐borne pathogens.  相似文献   

11.
Most emerging infectious diseases are zoonoses originating from wildlife among which vector‐borne diseases constitute a major risk for global human health. Understanding the transmission routes of mosquito‐borne pathogens in wildlife crucially depends on recording mosquito blood‐feeding patterns. During an extensive longitudinal survey to study sylvatic anophelines in two wildlife reserves in Gabon, we collected 2,415 mosquitoes of which only 0.3% were blood‐fed. The molecular analysis of the blood meals contained in guts indicated that all the engorged mosquitoes fed on wild ungulates. This direct approach gave only limited insights into the trophic behavior of the captured mosquitoes. Therefore, we developed a complementary indirect approach that exploits the occurrence of natural infections by host‐specific haemosporidian parasites to infer Anopheles trophic behavior. This method showed that 74 infected individuals carried parasites of great apes (58%), ungulates (30%), rodents (11%) and bats (1%). Accordingly, on the basis of haemosporidian host specificity, we could infer different feeding patterns. Some mosquito species had a restricted host range (An. nili only fed on rodents, whereas An. carnevalei, An. coustani, An. obscurus, and An. paludis only fed on wild ungulates). Other species had a wider host range (An. gabonensis could feed on rodents and wild ungulates, whereas An. moucheti and An. vinckei bit rodents, wild ungulates and great apes). An. marshallii was the species with the largest host range (rodents, wild ungulates, great apes, and bats). The indirect method substantially increased the information that could be extracted from the sample by providing details about host‐feeding patterns of all the mosquito species collected (both fed and unfed). Molecular sequences of hematophagous arthropods and their parasites will be increasingly available in the future; exploitation of such data with the approach we propose here should provide key insights into the feeding patterns of vectors and the ecology of vector‐borne diseases.  相似文献   

12.
Major nuisance species are found among the floodwater mosquitoes and snow‐pool mosquitoes, with the former being the main reason for mosquito control in most areas. Nuisance species vary with the area, and previous reports from northern areas conclude that the nuisance is most often caused by snow‐pool mosquitoes. We investigated the mosquito fauna and abundances of host‐seeking females using CDC traps baited with carbon dioxide, in Övertorneå city near the Arctic Circle in northern Sweden, after earlier complaints about massive mosquito nuisance. The abundance of host‐seeking female mosquitoes was high in 2014, with a maximum of ~15,400 individuals per CDC trap night, of which 89% was the floodwater mosquito Aedes rossicus. Surprisingly, the main nuisance species was a floodwater mosquito, occurring at the northernmost location it has ever been recorded in Sweden. Our report is probably the first documentation of such large numbers of Aedes rossicus in any locality and probably the first documentation of a severe floodwater mosquito nuisance near the Arctic Circle. Given the historical data on river discharge in the area, the nuisance is recurrent. We conclude that in northern localities, as well as in more southern localities, production of floodwater mosquitoes is a natural component of the floodplain fauna of rivers with a fluctuating water flow regime. Also, the floodwater mosquitoes Aedes sticticus and Aedes vexans were found north of their formerly known distribution in Sweden.  相似文献   

13.
The proposed expansion of biofuels production may cause unintended land‐use changes and potentially alter ecosystem services. This study evaluated the impact of first‐generation (corn) and second‐generation (switchgrass and Miscanthus) biofuel crops on production and oviposition site selection by two vector mosquitoes, the yellow fever mosquito Aedes aegypti and the Asian tiger mosquito Aedes albopictus. Larvae of the two species were reared at varying conspecific and heterospecific densities in senescent leaf infusions prepared from one of the three biofuel crops and their survival and development time to adulthood determined. The effects of the three leaf infusions on water chemistry and oviposition site selection by the two mosquito species were also determined. Ae. albopictus females deposited significantly fewer eggs in Miscanthus than in corn infusion while Ae. aegypti females deposited significantly fewer eggs in Miscanthus than in both corn and switchgrass infusion. Survival to adulthood for both mosquito species was significantly lower in corn than in switchgrass and Miscanthus infusions; was consistently lower at high‐ (0:40 and 20:20) than at low density treatments in both switchgrass and Miscanthus infusions; and significantly lower at high intraspecific density (40:0 and 0: 40) than at high interspecific density (20:20) in Miscanthus infusion. Development time to adulthood was positively related to larval density, but was not influenced by biofuel leaf treatment. Corn infusion had lower pH values and higher salinity, conductivity, total dissolved solids (TDS), and temperature values than switchgrass and Miscanthus infusions. These findings demonstrate the potential for biofuel crops to modify the chemistry of aquatic habitats in ways that may influence mosquito production and thereby the risk of exposure to mosquito‐borne diseases.  相似文献   

14.
Most data on species associations and vector potential of mosquitoes in relation to arboviral infections in South Africa date back from the 1940s to late 1990s. Contextual information crucial for disease risk management and control, such as the sampling effort, diversity, abundance, and distribution of mosquitoes in large parts of South Africa still remains limited. Adult mosquitoes were collected routinely from two horse farms in Gauteng Province; two wildlife reserves in Limpopo Province, at Orpen Gate in Kruger National Park (KNP) and Mnisi Area in Mpumalanga Province between 2014–2017, using carbon dioxide‐baited light and tent traps. Mosquito diversity and richness are greater in untransformed natural and mixed rural settings. In untransformed wilderness areas, the most dominant species were Culex poicilipes, Anopheles coustani, and Aedes mcintoshi, while in mixed rural settings such as the Mnisi area, the two most abundant species were Cx. poicilipes and Mansonia uniformis. However, in peri‐urban areas, Cx. theileri, Cx. univittatus, and Cx. pipiens sensu lato were the most dominant. Aedes aegypti, Ae. mcintoshi, Ae. metallicus, Ae. vittatus, Cx. pipiens s.l., Cx. theileri, and Cx. univittatus had the widest geographical distribution in northern South Africa. Also collected were Anopheles arabiensis and An. vaneedeni, both known malaria vectors in South Africa. Arbovirus surveillance and vector control programs should be augmented in mixed rural and peri‐urban areas where the risk for mosquito‐borne disease transmission to humans and domestic stock is greater.  相似文献   

15.
Rift Valley fever (RVF) is a mosquito‐borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes.  相似文献   

16.
Aedes aegypti is one of the most common urban tropical mosquito species and an important vector of dengue, chikungunya, and yellow fever viruses. It is also an organism with a complex life history where larval stages are aquatic and adults are terrestrial. This ontogenetic niche shift could shape the density‐dependent regulation of this and other mosquito species, because events that occur during the larval stages impact adult densities. Herein, we present results from simple density‐dependent mathematical models fitted using maximum likelihood methods to weekly time series data from Puerto Rico and Thailand. Density‐dependent regulation was strong in both populations. Analysis of climatic forcing indicated that populations were more sensitive to climatic variables with low kurtosis, i.e., climatic factors highly variable around the median, rainfall in Puerto Rico, and temperature in Thailand. Changes in environmental variability appear to drive sharp changes in the abundance of mosquitoes. The identification of density‐independent (i.e., exogenous) variables forcing sharp changes in disease vector populations using the exogenous factors statistical properties, such as kurtosis, could be useful to assess the impacts of changing climate patterns on the transmission of vector‐borne diseases.  相似文献   

17.
Adjacent to the northern suburbs of Darwin is a coastal wetland that contains important larval habitats for Aedes vigilax (Skuse), the northern salt marsh mosquito. This species is a vector for Ross River virus and Barmah Forest virus, as well as an appreciable human pest. In order to improve aerial larval control efforts, we sought to identify the most important vegetation categories and climatic/seasonal aspects associated with control operations in these wetlands. By using a generalized linear model to compare aerial control for each vegetation category, we found that Schoenoplectus/mangrove areas require the greatest amount of control for tide‐only events (30.1%), and also extensive control for tide and rain events coinciding (18.2%). Our results further indicate that tide‐affected reticulate vegetation indicated by the marsh grasses Sporobolus virginicus and Xerochloa imberbis require extensive control for Ae. vigilax larvae after rain‐only events (44.7%), and tide and rain events coinciding (38.0%). The analyses of vector control efforts by month indicated that September to January, with a peak in November and December, required the most control. A companion paper identifies the vegetation categories most associated with Aedes vigilax larvae population densities in the coastal wetland. To maximize the efficiency of aerial salt marsh mosquito control operations in northern Australia, aerial control efforts should concentrate on the vegetation categories with high larval densities between September and January.  相似文献   

18.
Understanding how midgut microbial communities of field‐collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV‐infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV.  相似文献   

19.
Coastal realignment is now widely instituted in the UK as part of local flood risk management plans to compensate for the loss of European protected habitat and to mitigate the effects of sea‐level rise and coastal squeeze. Coastal aquatic habitats have long been known to provide suitable habitats for brackish‐water mosquitoes and historically, coastal marshes were considered to support anopheline mosquito populations that were responsible for local malaria transmission. This study surveyed the eight largest managed realignment (MRA) sites in England (Essex and the Humber) for mosquito habitats. The apparent absence of anopheline mosquitoes exploiting aquatic habitats at all of these sites suggests that the risk of malaria associated with MRA sites is currently negligible. However, three of the eight sites supported populations of two nuisance and potential arboviral vector species, Aedes detritus and Aedes caspius. The aquatic habitats that supported mosquitoes resulted from a) specific design aspects of the new sea wall (ballast to mitigate wave action and constructed saline borrow ditches) that could be designed out or managed or b) isolated pools created through silt accretion or expansion of flooded zones to neighbouring pasture. The public health risks and recommendations for management are discussed in this report. This report highlights the need for pro‐active public health impact assessments prior to MRA development in consultation with the Health Protection Agency, as well as the need for a case‐by‐case approach to design and management to mitigate mosquito or mosquito‐borne disease issues now and in the future.  相似文献   

20.
An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito‐free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号