首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidemiologic studies indicated an association of obesity with increased incidence of colorectal, breast and ovarian cancer. Further studies found a positive correlation between increased serum oxLDL and an increased risk of the three cancers. In contrast, our previous studies found a negative correlation between the serum oxLDL levels and the risk of leukemia and esophageal cancer. Identification of the variability of cytotoxicity of oxLDL-induced on different types of cell lines is important for understanding the mechanism of oxLDL involved in the tumorigenesis. In the present study, we investigated the effective impacts of oxLDL on the proliferation and apoptosis for the human umbilical vein endothelial cells (HUVEC) and two cancer cell lines (EC-9706 and K562/AO2 with multi-drug resistance). HUVEC, K562/AO2 and EC-9706 cell lines were cultured in the presence of oxLDL, and cell proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, apoptosis and cell cycle by flow cytometer, mRNA expression by RT-PCR and protein expression by Western blot. OxLDL could inhibit proliferation and apoptosis of the three cell lines; however, there were significant differences of effective action on the viability and apoptosis. The dose of oxLDL-induced cytotoxicity on HUVEC was higher than that on the two tumor cells. The antibody of lectin-like oxLDL receptor-1 (LOX-1-ab) can block oxLDL-induced cytotoxicity. Cells apoptosis is mediated by reducing Bcl-2 and increasing Bax and caspase-3 mRNA and protein expression. This study showed the dose of oxLDL-induced cytotoxicity on HUVEC was higher than that on K562/AO2 and EC-9706 tumor cells. The antibody of LOX-1 receptor can block the oxLDL-induced cytotoxicity.  相似文献   

2.
3.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

4.
Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix in physiological and pathological processes. MMPs also have a role in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. We previously identified cancer invasion-related factors by comparing the gene expression profiles between parent and the highly invasive clone of cancer cells. Matrix metalloproteinase-13 (MMP-13) was identified as a common up-regulated gene by cancer invasion-related factors. Although MMP-13 slightly promoted tumor invasion, we found that MMP-13 was involved in tumor angiogenesis. Conditioned medium from MMP-13-overexpressing cells promoted capillary formation of immortalized human umbilical vein endothelial cells. Furthermore, treatment with recombinant MMP-13 protein enhanced capillary tube formation both in vitro and in vivo. MMP-13-promoted capillary tube formation was mediated by activation of focal adhesion kinase and ERK. Interestingly, MMP-13 promoted the secretion of VEGF-A from fibroblasts and endothelial cells. By immunohistochemical analysis, we found a possible correlation between MMP-13 expression and the number of blood vessels in human cancer cases. In summary, these findings suggest that MMP-13 may directly and indirectly promote tumor angiogenesis.  相似文献   

5.
Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation and Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.  相似文献   

6.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

7.
IGF-1 is one of the key molecules in cancer biology; however, little is known about the role of the preferential expression of the premature IGF-1 isoforms in prostate cancer. We have examined the role of the cleaved COO– terminal peptide (PEc) of the third IGF-1 isoform, IGF-1Ec, in prostate cancer. Our evidence suggests that endogenously produced PEc induces cellular proliferation in the human prostate cancer cells (PC-3) in vitro and in vivo, by activating the ERK1/2 pathway in an autocrine/paracrine manner. PEc overexpressing cells and tumors presented evidence of epithelial to mesenchymal transition, whereas the orthotopic injection of PEc-overexpressing, normal prostate epithelium cells (HPrEC) in SCID mice was associated with increased metastatic rate. In humans, the IGF-1Ec expression was detected in prostate cancer biopsies, where its expression correlates with tumor stage. Our data describes the action of PEc in prostate cancer biology and defines its potential role in tumor growth, progression and metastasis.  相似文献   

8.
In this study, we analyzed the effect of endothelin-1 (ET-1) on expression of the lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 LOX-1 and on oxLDL uptake in primary cultures of human umbilical vein endothelial cells (HUVEC). LOX-1 mRNA was quantified by standard-calibrated competitive RT-PCR, LOX-1 protein expression by Western analysis and endothelial oxLDL uptake using DiI-labeled oxLDL. ET-1 induces LOX-1 mRNA expression, reaching its maximum after 1 h (160 +/- 14% of control, 100 nM ET-1, P < 0.05). This increased ET-1-mediated LOX-1 mRNA expression could be inhibited by endothelin receptor B antagonist BQ-788. In addition, ET-1 stimulates LOX-1 protein expression and oxLDL uptake in HUVEC. The augmented oxLDL uptake by ET-1 is mediated by endothelin receptor B, but not by protein kinases. These data support a new pathophysiological mechanism how locally and systemically increased ET-1 levels could promote LOX-1-mediated oxLDL uptake in human endothelial cells and the development and progression of endothelial dysfunction and atherosclerosis.  相似文献   

9.
IL-8, a member of the chemokine family, has been shown to play an important role in tumor growth, angiogenesis, and metastasis. The objective of this study was to determine the mechanism of IL-8-mediated angiogenesis. We examined the direct role of IL-8 in angiogenesis by examining IL-8 receptor expression on endothelial cells and their proliferation, survival, and matrix metalloproteinases (MMPs) production. We demonstrate that HUVEC and human dermal microvascular endothelial cells constitutively express CXCR1 and CXCR2 mRNA and protein. Recombinant human IL-8 induced endothelial cell proliferation and capillary tube organization while neutralization of IL-8 by anti-IL-8 Ab blocks IL-8-mediated capillary tube organization. Incubation of endothelial cells with IL-8 inhibited endothelial cell apoptosis and enhanced antiapoptotic gene expression. Endothelial cells incubated with IL-8 had higher levels of Bcl-x(L):Bcl-x(S) and Bcl-2:Bax ratios. Furthermore, incubation of endothelial cells with IL-8 up-regulated MMP-2 and MMP-9 production and mRNA expression. Our data suggest that IL-8 directly enhanced endothelial cell proliferation, survival, and MMP expression in CXCR1- and CXCR2-expressing endothelial cells and regulated angiogenesis.  相似文献   

10.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

11.
AimsProstate cancer continues to be one of the main global health issues in men. Neuropeptide substance P (SP) acting via neurokinin-1receptor (NK1R) promotes tumorigenicity in many human malignant tumors. However, its pro-tumorigenic functions and the therapeutic effects of its inhibition in prostate cancer remain unclear.MethodsMTT assay was employed for measuring cellular proliferation and cytotoxicity. mRNAs and proteins expression levels were evaluated by qRT-PCR and western blot assay, respectively. Gelatinase activity was assessed by zymography. The migration ability was defined using wound-healing assay. Flow cytometry was employed to evaluate the cell cycle distribution. We also performed an in vivo experiment in a mouse model of prostate cancer to confirm the in vitro therapeutic effect of targeting the SP/NK1R system.ResultsWe found a noticeable increase in the expression of the truncated isoform of NK1R as an oncogenic NK1R splice variant in tumor cells. We also demonstrated that SP promotes both proliferative and migrative phenotypes of prostate cancer through modifying cell cycle-related proteins (c-Myc, cyclin D1, cyclin B1, p21), and apoptosis-related genes (Bcl-2 and Bax), promoting cell migration and increasing MMP-2 and MMP-9 expression and activity, while aprepitant administration could remarkably reverse these effects. SP also stimulated tumor growth in vivo, which was correlated with shorter survival times, while aprepitant reversed this effect and led to significantly longer survival time.SignificanceOur findings suggest that SP/NK1R system may serve as a novel therapeutic target in prostate cancer and support the possible candidacy of aprepitant in future prostate cancer therapy.  相似文献   

12.
Raf kinase inhibitor protein (RKIP) plays a pivotal role in several intracellular signaling cascades and has been implicated as a metastasis suppressor in multiple cancer cells including prostate cancer cells, but the mechanism is not very clear. In this study, we investigated the effect of RKIP on cell proliferation, migration and invasion using human prostate cancer PC-3M cells as a model system. Our results indicate that RKIP does not effect cell proliferation in PC-3M cells, but inhibits both cell migration and cell invasion. In association with this inhibitory effect, RKIP down-regulates matrix metalloproteinases (MMP-2 and MMP-9), cathepsin B and urinary plasminogen activator (uPA). Also RKIP has the ability to regulate the expression of E-cadherin. But ectopic expression of RKIP does not affect the level of the Snail protein. As it has been indicated here, RKIP inhibits the migration and invasion ability of human prostate cancer cells through regulation of the extracellular matrix. These findings provide new mechanistic insight how RKIP suppresses metastasis in vitro.  相似文献   

13.
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.  相似文献   

14.
15.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.  相似文献   

16.
Altered angiogenesis response is observed in patients with cervical cancer. In this study we examined whether Human Papilloma Virus (HPV) positive epithelial cells are able to produce angiogenic modulators. When added to human umbilical vein endothelial cells (HUVEC) the media conditioned by HPV-16 positive cells was able to induce proliferation, whereas a contrary effect was observed for media derived from non-tumorigenic keratinocytes. The analyses of angiogenesis modulator's mRNA levels result in a decrease of the antiangiogenic factors TSP-1 and 2 in HPV-16 positive cells. In contrast the expression of the pro-angiogenic molecules: bFGF, IL-8, TGF-beta, TNFalpha, and VEGF were higher in these cells as compared to control keratinocytes. Furthermore the pattern of VEGF isoforms observed in the cells positive for the viral genome point to a preferential induction of the VEGF(189) isoform. We therefore conclude that cervical cancer cells expressing HPV-16 genome are able to contribute to the pro-angiogenic response that might support tumor growth and invasion of the surrounding tissues.  相似文献   

17.
18.
Ni F  Gong Y  Li L  Abdolmaleky HM  Zhou JR 《PloS one》2012,7(6):e38802
The objective of this study was to evaluate the chemopreventive effect of a novel flavonoid, ampelopsin (AMP) on the growth and metastasis of prostate cancer cells. AMP showed the more potent activity in inhibiting the proliferation of androgen-sensitive LNCaP and, to less extent, androgen-independent PC-3 human prostate cancer cell lines in vitro, primarily by induction of apoptosis associated with down-regulation of bcl-2. On the other hand, AMP showed much less activity in inhibiting the proliferation of normal prostate epithelial cells than that of prostate cancer cell lines. AMP also inhibited the migration and invasion of PC-3 cells in vitro associated with down-regulation of CXCR4 expression. In the animal study using an orthotopic prostate tumor model, AMP (150 and 300 mg/kg body weight) inhibited the growth of PC-3 tumors and lymph node and lung metastases in a dose-dependent manner. Compared to the control mice, mice treated with AMP at 300 mg/kg BW had reduced final tumor weight by 49.2% (P<0.05), lymph node metastases by 54.5% (P?=?0.3) and lung metastases by 93% (P<0.05), but had no apparent alteration on food intake or body weight. The in vivo anti-growth and anti-metastasis activities of AMP were associated with induction of apoptosis and inhibition of proliferation of prostate cancer cells, reduction of prostate tumor angiogenesis, and reduction of CXCR4 expression. Our results provide supporting evidence to warrant further investigation to develop AMP as a novel efficacious and safe candidate agent against progression and metastasis of prostate cancer.  相似文献   

19.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

20.
We have previously demonstrated the effectiveness of adenovirus-mediated expression of antisense urokinase-type plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) in inhibiting tumor invasion in vitro and ex vivo. However, the therapeutic effect of the adenovirus-mediated antisense approach was shown to be transient and required potentially toxic, high viral doses. In contrast, RNA interference (RNAi)-mediated gene targeting may be superior to the traditional antisense approach, because the target mRNA is completely degraded and the molar ratio of siRNA required to degrade the target mRNA is very low. Here, we have examined the siRNA-mediated target RNA degradation of uPAR and MMP-9 in human glioma cell lines. Using RNAi directed toward uPAR and MMP-9, we achieved specific inhibition of uPAR and MMP-9. This bicistronic construct (pUM) inhibited the formation of capillary-like structures in both in vitro and in vivo models of angiogenesis. We demonstrated that blocking the expression of these genes results in significant inhibition of glioma tumor invasion in Matrigel and spheroid invasion assay models. RNAi for uPAR and MMP-9 inhibited cell proliferation, and significantly reduced the levels of phosphorylated forms of MAPK, ERK, and AKT signaling pathway molecules when compared with parental and empty vector/scrambled vector-transfected SNB19 cells. Furthermore, using RNAi to simultaneously target two proteases resulted in total regression of pre-established intracerebral tumor growth. Our results provide evidence that the use of hairpin siRNA expression vectors for uPAR and MMP-9 may provide an effective tool for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号