首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.  相似文献   

2.

Background

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.

Methodology/Principal Findings

In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.

Conclusions/Significance

These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection.  相似文献   

3.
Trypanosoma cruzi causes Chagas disease, a neglected illness that affects millions of people worldwide, especially in Latin America. The balance between biochemical pathways triggered by the parasite and host cells response will ultimately define the progression of a life-threatening disease, justifying the efforts to understand cellular mechanisms for infection restrain. In this interaction, parasite and host cells are affected by different physiological responses as autophagy modulation, which could be under intense cellular stress, such as nutrient deprivation, hormone depletion, or infection. Autophagy is a constitutive pathway that leads to degradation of macromolecules and cellular structures and may induce cell death. In Trypanosoma cruzi infection, the relevance of host autophagy is controversial regarding in vitro parasite intracellular life cycle. In the present study, we evaluated host cell autophagy during T. cruzi infection in phagocytic and non-professional phagocytic cells. We described that the presence of the parasite increased the number of LC3 puncta, a marker for autophagy, in cardiac cells and peritoneal macrophages in vitro. The induction of host autophagy decreased infection in macrophages in early and late time-periods. We suggest that starved phagocytic cells reduced internalization, also confirmed by inert particles and dead trypomastigotes. Whereas, in cardiac cells, starvation-induced autophagy decreased lipid droplets and infection in later time-point, by reducing parasite differentiation/proliferation. In ATG5 knockout MEF cells, we confirmed our hypothesis of autophagy machinery activation during parasite internalization, increasing infection. Our data suggest that host autophagy downregulates T. cruzi infection through impairing parasite intracellular life cycle, reducing the infection in primary culture cells.  相似文献   

4.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

5.
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.  相似文献   

6.
Death receptor‐mediated host cell apoptosis, a defense strategy for elimination by the immune system of parasite‐infected cells, is inhibited by Trypanosoma cruzi, the causative agent of Chagas' disease. It has previously been reported by us that, in infected cells, T. cruzi upregulates and exploits cFLIPL, a mammalian inhibitor of death receptor signaling. Here it is shown that ubiquitination of cFLIPL, leading to proteasomal degradation, is inhibited in parasite‐infected cells. The extent of expression of Itch, a protein thought to be an ubiquitin ligase for cFLIPL, was found to be equivalent in T. cruzi‐infected and in uninfected cells. However, co‐immunoprecipitation analysis showed that the interaction between cFLIPL and Itch is strongly inhibited in T. cruzi‐infected cells. This unique parasite strategy, which has not been reported in any other pathogen‐infected cells, may allow the host cell to accumulate cFLIPL, eventually resulting in the inhibition of apoptosis of T. cruzi‐infected cells.  相似文献   

7.
Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.  相似文献   

8.

Background

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Despite the vast number of studies evaluating the pathophysiological mechanisms of the disease, the influence of parasite burden on kidney lesions remains unclear. Thus, the main goal of this work was to evaluate the effect of T. cruzi infection on renal function and determine whether there was a correlation between parasite load and renal injury using an acute experimental model of the disease.

Methodology/Principal Findings

Low, medium and high parasite loads were generated by infecting C57BL/6 mice with 300 (low), 3,000 (medium) or 30,000 (high) numbers of “Y” strain trypomastigotes. We found that mice infected with T. cruzi trypomastigotes show increased renal injury. The infection resulted in reduced urinary excretion and creatinine clearance. We also observed a marked elevation in the ratio of urine volume to kidney and body weight, blood urea nitrogen, chloride ion, nitric oxide, pro- and anti-inflammatory cytokines and the number of leukocytes in the blood and/or renal tissues of infected mice. Additionally, we observed the presence of the parasite in the cortical/medullary and peri-renal region, an increase of inflammatory infiltrate and of vascular permeability of the kidney. Overall, most renal changes occurred mainly in animals infected with high parasitic loads.

Conclusions/Significance

These data demonstrate that T. cruzi impairs kidney function, and this impairment is more evident in mice infected with high parasitic loads. Moreover, these data suggest that, in addition to the extensively studied cardiovascular effects, renal injury should be regarded as an important indicator for better understanding the pan-infectivity of the parasite and consequently for understanding the disease in experimental models.  相似文献   

9.
Chagas disease affects about 5 million people across the world. The etiological agent, the intracellular parasite Trypanosoma cruzi (T. cruzi), can be diagnosed using microscopy, serology or PCR based assays. However, each of these methods has their limitations regarding sensitivity and specificity, and thus to complement these existing diagnostic methods, alternate assays need to be developed. It is well documented that several parasite proteins called T. cruzi Excreted Secreted Antigens (TESA), are released into the blood of an infected host. These circulating parasite antigens could thus be used as highly specific biomarkers of T. cruzi infection. In this study, we have demonstrated that, using a SELEx based approach, parasite specific ligands called aptamers, can be used to detect TESA in the plasma of T. cruzi infected mice. An Enzyme Linked Aptamer (ELA) assay, similar to ELISA, was developed using biotinylated aptamers to demonstrate that these RNA ligands could interact with parasite targets. Aptamer L44 (Apt-L44) showed significant and specific binding to TESA as well as T. cruzi trypomastigote extract and not to host proteins or proteins of Leishmania donovani, a related trypanosomatid parasite. Our result also demonstrated that the target of Apt-L44 is conserved in three different strains of T. cruzi. In mice infected with T. cruzi, Apt-L44 demonstrated a significantly higher level of binding compared to non-infected mice suggesting that it could detect a biomarker of T. cruzi infection. Additionally, Apt-L44 could detect these circulating biomarkers in both the acute phase, from 7 to 28 days post infection, and in the chronic phase, from 55 to 230 days post infection. Our results show that Apt-L44 could thus be used in a qualitative ELA assay to detect biomarkers of Chagas disease.  相似文献   

10.
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease, shed extracellular vesicles (EVs) that promote the susceptibility of host cells to infection. During T. cruzi infection, the immune response of the host is important for controlling parasitism, which is necessary for survival. Macrophages produce inflammatory mediators, such as eicosanoids and nitric oxide (NO), with trypanocidal effects that control the parasite load in the early stages of the disease. In this study, we evaluated the contribution of host cyclooxygenase (COX) to the actions of EVs shed by T. cruzi strain Y (EVs-Y) in infected macrophages. RAW 264.7 macrophages exposed to EVs-Y and then infected with trypomastigote forms of T. cruzi produced less NO, and an increased number of trypomastigote forms were internalized in the cell compared to the controls, indicating that the effects exerted by EVs-Y favor the parasite. Interestingly, when macrophages were pretreated with acetylsalicylic acid, a dual COX inhibitor, before exposure to EVs-Y and subsequent infection with trypomastigote forms, there was an increase in NO production and a decrease in trypomastigote uptake compared to the controls. These results suggest that EVs-Y modulates the macrophage response in favor of T. cruzi and indicate a role for COX in the effects of EVs.  相似文献   

11.
The parasite Trypanosoma cruzi is the causative agent of Chagas disease. T. cruzi invasion and replication in cardiomyocytes induce cellular injuries and cytotoxic reactions, with the production of inflammatory cytokines and nitric oxide, both source of reactive oxygen species. The myocyte response to oxidative stress involves the progression of cellular changes primarily targeting mitochondria. We studied the cardiac mitochondrial structure and the enzymatic activity of citrate synthase and respiratory chain CI–CIV complexes, in Albino Swiss mice infected with T. cruzi, Tulahuen strain and SGO Z12 isolate, in two periods of the acute infection. Changes in the mitochondrial structure were detected in both infected groups, reaching values of 71% for Tulahuen and 88% for SGO Z12 infected mice, 30 days post infection. The citrate synthase activity was different according to the evolution of the infection and the parasite strain, but the respiratory chain alterations were similar with either strain.  相似文献   

12.

Background

The immune mechanisms underlying experimental non-alcoholic steatohepatitis (NASH), and more interestingly, the effect of T. cruzi chronic infection on the pathogenesis of this metabolic disorder are not completely understood.

Methodology/Principal Findings

We evaluated immunological parameters in male C57BL/6 wild type and TLR4 deficient mice fed with a standard, low fat diet, LFD (3% fat) as control group, or a medium fat diet, MFD (14% fat) in order to induce NASH, or mice infected intraperitoneally with 100 blood-derived trypomastigotes of Tulahuen strain and also fed with LFD (I+LFD) or MFD (I+MFD) for 24 weeks. We demonstrated that MFD by itself was able to induce NASH in WT mice and that parasitic infection induced marked metabolic changes with reduction of body weight and steatosis revealed by histological studies. The I+MFD group also improved insulin resistance, demonstrated by homeostasis model assessment of insulin resistance (HOMA-IR) analysis; although parasitic infection increased the triglycerides and cholesterol plasma levels. In addition, hepatic M1 inflammatory macrophages and cytotoxic T cells showed intracellular inflammatory cytokines which were associated with high levels of IL6, IFNγ and IL17 plasmatic cytokines and CCL2 chemokine. These findings correlated with an increase in hepatic parasite load in I+MFD group demonstrated by qPCR assays. The recruitment of hepatic B lymphocytes, NK and dendritic cells was enhanced by MFD, and it was intensified by parasitic infection. These results were TLR4 signaling dependent. Flow cytometry and confocal microscopy analysis demonstrated that the reactive oxygen species and peroxinitrites produced by liver inflammatory leukocytes of MFD group were also exacerbated by parasitic infection in our NASH model.

Conclusions

We highlight that a medium fat diet by itself is able to induce steatohepatitis. Our results also suggest a synergic effect between damage associated with molecular patterns generated during NASH and parasitic infection, revealing an intense cross-talk between metabolically active tissues, such as the liver, and the immune system. Thus, T. cruzi infection must be considered as an additional risk factor since exacerbates the inflammation and accelerates the development of hepatic injury.  相似文献   

13.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects several million people in Latin America. Myocarditis, observed during both the acute and chronic phases of the disease, is characterized by an inflammatory mononuclear cell infiltrate that includes CD4+ T cells. It is known that Th1 cytokines help to control infection. The role that Treg and Th17 cells may play in disease outcome, however, has not been completely elucidated. We performed a comparative study of the dynamics of CD4+ T cell subsets after infection with the T. cruzi Y strain during both the acute and chronic phases of the disease using susceptible BALB/c and non-susceptible C57BL/6 mice infected with high or low parasite inocula. During the acute phase, infected C57BL/6 mice showed high levels of CD4+ T cell infiltration and expression of Th1 cytokines in the heart associated with the presence of Treg cells. In contrast, infected BALB/c mice had a high heart parasite burden, low heart CD4+ T cell infiltration and low levels of Th1 and inflammatory cytokines, but with an increased presence of Th17 cells. Moreover, an increase in the expression of IL-6 in susceptible mice was associated with lethality upon infection with a high parasite load. Chronically infected BALB/c mice continued to present higher parasite burdens than C57BL/6 mice and also higher levels of IFN-γ, TNF, IL-10 and TGF-β. Thus, the regulation of the Th1 response by Treg cells in the acute phase may play a protective role in non-susceptible mice irrespective of parasite numbers. On the other hand, Th17 cells may protect susceptible mice at low levels of infection, but could, in association with IL-6, be pathogenic at high parasite loads.  相似文献   

14.
Leukotrienes are important mediators of inflammatory responses. In this study, we investigated the effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide (NO) and iNOS expression in cardiac tissue of mice infected with Trypanosoma cruzi, the agent of Chagas’ disease. NO is a key mediator of parasite killing in mice experimentally infected with T. cruzi, and previous studies have suggested that leukotrienes, such as LTB4, induces NO synthesis in T. cruzi-infected macrophages and plays a relevant role in the killing of parasite in a NO-dependent manner. We therefore investigated whether leukotrienes would have a similar role in vivo in controlling the parasite burden by regulating NO activity. We have made the striking observation that absence of 5-LO-derived leukotrienes results in increased NO and IL-6 production in the plasma with a concomitant decrease in the expression of iNOS in the cardiac tissue on day 12 after T. cruzi infection. These findings indicate that endogenous leukotrienes are important regulators of NO activity in the heart and therefore influence the cardiac parasite burden without exerting a direct action on IL-6 production in the acute phase of infection with T. cruzi.  相似文献   

15.
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.  相似文献   

16.
During the course of Trypanosoma cruzi infection in C57BL/6 mice, which are relatively resistant to the parasite, the hosts developed antibody activity against previously unencountered antigens. The anti-sheep erythrocyte and antitrinitrophenyl antibody levels increased rapidly from Day 7 of infection, reached a peak by the 21st day, and were maintained at this level through 120 days postinfection in these mice. In contrast, highly susceptible C3H(He) mice did not have demonstrable antibody responses to SRBC or TNP during the 24-day infection period. Autoantibody activity against the selfantigens presented on isologous erythrocytes or thymocytes, however, were reduced in infected C57BL/6 mice. No significant reduction in autoreactivity to the self-antigens on erythrocytes or thymocytes was observed in C3H(He) mice infected with T. cruzi although a trend of reduced autoresponsiveness toward erythrocytes appeared to be developing by the time of death. C57BL/6 mice immunized with sheep erythrocytes as neonates and infected with T. cruzi as adults, or adult mice primed with low doses of sheep erythrocytes prior to infection, had elevated antibody responses to sheep erythrocytes unless the mice were immunized with sheep erythrocytes during the course of infection, in which case suppression of the response against sheep erythrocytes resulted. The nonspecific synthesis of immunoglobulins in infected C57BL/6 mice was, in part, a result of the lymphocyteactivating properties of T. cruzi-associated antigens. The T. cruzi-associated antigens induced proliferative and differentiative responses in spleen cells in vitro. It is proposed that the T. cruzi-associated antigens differentially affect lymphocytes capable of responding to antigen and those lymphocytes previously stimulated by antigen.  相似文献   

17.
Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.  相似文献   

18.
Human infection with the protozoan Trypanosoma cruzi leads to Chagas disease. After 10-20 years of the normal acute phase, this disease develops to a chronic phase characterized mainly by dilated congestive cardiomyopathy. The mechanisms involved in the chronic phase are poorly understood, and it has been suggested that the parasite evades immune surveillance by down regulating the MHC class I antigen processing pathway. Here we analyzed whether composition or expression of the 20S proteasome, the major proteinase responsible for the generation of MHC class I ligands, were altered upon infection of HeLa cells by T. cruzi. Two-dimensional gel electrophoresis and RT-PCR experiments comparing non-infected and infected cells did not show differences between the composition of 20S proteasome or expression of its subunits. However, the proteasome’s trypsin- and chymotrypsin-like activities were 2.5 and 3.6 times higher in infected cells than in non-infected cells. Our results suggest that in vitroT. cruzi infection of human or rat cells do not alter the expression of 20S proteasomal subunits or particle composition, and fails to induce the formation of immunoproteasome. However, a significant increase in the trypsin- and chymotrypsin-like activities of the host proteasome was observed.  相似文献   

19.
Nifurtimox and benznidazole are the only active drugs against Trypanosoma cruzi; however, they have limited efficacy and severe side effects. During primoinfection, T. cruzi infected macrophages mount an antiparasitic response, which the parasite evades through an increase of tumor growth factor β and PGE2 activation as well as decreased iNOS activity. Thus, prostaglandin synthesis inhibition with aspirin might increase macrophage antiparasitic activity and increase nifurtimox and benznidazole effect.Aspirin alone demonstrated a low effect upon macrophage antiparasitic activity. However, isobolographic analysis of the combined effects of aspirin, nifurtimox and benznidazole indicated a synergistic effect on T. cruzi infection of RAW cells, with combinatory indexes of 0.71 and 0.61, respectively.The observed effect of aspirin upon T. cruzi infection was not related with the PGE2 synthesis inhibition. Nevertheless, NO levels were restored by aspirin in T. cruzi-infected RAW cells, contributing to macrophage antiparasitic activity improvement.Thus, the synergy of aspirin with nifurtimox and benznidazole is due to the capability of aspirin to increase antiparasitic activity of macrophages.  相似文献   

20.
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T. cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO?/? mice exhibited reduced inflammation, collagen deposition, and migration of CD4+, CD8+, and IFN-γ-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-α, IFN-γ, and nitric oxide synthase were found in the hearts of 5-LO?/? mice. Interestingly, despite of early higher parasitic load, 5-LO?/? mice survived, and controlled T. cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO?/? mice, in which reduced myocarditis protects the animals during T. cruzi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号