首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
藻类和苔藓植物是荒漠植被演替过程中常见的两类先锋植物,同时也是生物结皮中生物量最大的2个类群。该文综述了近年来干旱半干旱荒漠地区生物结皮中藻类和苔藓两大类植物区系及其生态作用的研究进展,重点介绍藻类结皮、苔藓结皮的生态作用以及二者之间存在的生态学关系。在此基础上对荒漠生物结皮中藻类与苔藓植物的研究前景进行了展望,指出荒漠生物结皮中藻类与苔藓共生机理的探讨是未来的研究重点,这对进一步探明生物结皮中藻类和苔藓植物之间的相互作用,揭示它们的生态学关系具有重要的理论意义和实践价值。  相似文献   

2.
荒漠生物结皮中藻类和苔藓植物研究进展   总被引:11,自引:0,他引:11  
藻类和苔藓植物是荒漠植被演替过程中常见的两类先锋植物, 同时也是生物结皮中生物量最大的2个类群。该文综述了近年来干旱半干旱荒漠地区生物结皮中藻类和苔藓两大类植物区系及其生态作用的研究进展, 重点介绍藻类结皮、苔藓结皮的生态作用以及二者之间存在的生态学关系。在此基础上对荒漠生物结皮中藻类与苔藓植物的研究前景进行了展望, 指出荒漠生物结皮中藻类与苔藓共生机理的探讨是未来的研究重点, 这对进一步探明生物结皮中藻类和苔藓植物之间的相互作用, 揭示它们的生态学关系具有重要的理论意义和实践价值。  相似文献   

3.
水分亏缺对作物的伤害   总被引:1,自引:0,他引:1  
全世界干旱、半干旱地区的总面积约占总陆地面积的1/3。中国是世界上主要的干旱国家之一,全国干旱、半干旱地区约占总国土面积的一半左右。干旱是制约我国西北和整个北方地区农业生产发展的基本自然因素,其他地区在作物生长季节也发生不同程度的干旱危害。研究作物水分胁迫及其伤害生理,不仅在理论上而且在实践中都有重要意义。  相似文献   

4.
植被建设是中国北方干旱半干旱地区防治风蚀和水蚀的最为有效手段,而合理的植被建设需要考虑土壤水分的植被承载力。在收集有关中国北方干旱半干旱地区植被建设后土壤水分研究文献的基础上,采用Meta分析研究了该地区植被建设(乔木和灌木)对土壤水分的影响。结果表明:北方干旱半干旱地区植被建设总体上对深层(40 cm以下)土壤水分含量产生显著降低作用(结合效应值为-0.40);乔木栽植导致土壤水分含量大幅度降低(-0.58),灌木栽植也在一定程度上导致土壤水分含量降低(-0.27),但其影响不显著;亚组分析表明,建植年限20 a的乔木以及栽植在降雨量超过400 mm以上地区的乔木是导致土壤水分含量显著降低的主要因素(其结合效应值分别为-0.62和-0.69);因此,乔木栽植对于土壤水分的消耗大于灌木,在该地区开展灌木栽植能够有效提高土壤水分利用效率。  相似文献   

5.
一、一个广袤而重要的地区比较一致的看法,年降水量400mm 等值线是我国湿润地区与干旱地区的分界线。这条线东自大兴安岭起,向南偏西经坝上草原,过陕北到兰州,再到拉萨。这条线以北以西地区都属于干旱半干旱地区。在干旱与半干旱地区之间,也有一条分界线,大致是东起二连浩特,  相似文献   

6.
一、引言土地沙漠化是本世纪六十年代以来引起人们十分关注的干旱、半干旱地区环境退化问题。我国沙漠化土地约为17万平方公里(其中约5万平方公里为近半个世纪内形成),分布在新疆、内蒙古、陕西、辽宁等12个省(区)的207个县(市、旗),涉及约3500万人口,尤以半干旱草原地带及荒漠草原地带为严重。沙漠化是干旱、半干旱地区生态环境退化的  相似文献   

7.
干旱半干旱地区是生态系统和水资源系统最脆弱的地区之一,也是降水变率最大的地区,对这一地区河流健康的研究,可为生态系统的管理与恢复等提供非常有价值的见解。因此,确定影响干旱半干旱地区流域健康的主要因素、制定可快速监测与检测其健康状况的生态指标,并对其发展趋势进行诊断与预测,随时采取可行的干预措施是至关重要的。以河流健康的定义与评价内涵、评价指标研究态势为根本,在分析干旱半干旱地区河流的生态系统特征、河流关键生态环境机理及表现、社会-生态-文化系统长期相互影响的基础上,从水资源、植被、物理化学特性、社会经济等方面出发,提出了适用于干旱半干旱地区河流健康评价的关键控制性指标。  相似文献   

8.
苔藓植物对青岛市大气重金属污染的生物监测作用   总被引:2,自引:0,他引:2  
苔藓植物因具有独特的形态和生理特征, 对空气污染反应十分敏感, 已被广泛用于监测城市或地区的环境质量与变化。通过分析连续2年采自青岛市崂山区的苔藓植物体内重金属含量, 并与崂山土壤重金属含量相比较, 探讨苔藓植物对大气重金属污染物的积累和指示作用。结果表明, 苔藓植物体内重金属含量能够反映空气重金属污染程度和空气质量变化。在崂山广泛分布的毛尖紫萼藓(Grimmia pilifera)对空气中重金属Pb、Zn、Cu和Cd都有着很强的富集能力, 是一种很好的重金属污染指示植物。长叶鳞叶藓(Taxiphyllum taxirameum)、大灰藓(Hypnum plumaeforme)和深绿绢藓(Entodon luridus)在崂山分布较多, 对重金属的积累能力也较强, 可用来监测青岛大气重金属污染。该研究为评价青岛市空气重金属污染状况提供了一个有效的生物监测方法。  相似文献   

9.
祁连山不同景观类型中苔藓植物物种多样性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对祁连山不同景观类型中的苔藓植物进行样方调查与物种组成统计,采用物种相似性系数、多样性指数对苔藓植物物种多样性进行了分析。结果表明,30个10 m×10 m的样地内共计苔藓植物19科34属48种,其中优势科(≥3种)有6科,含19属31种,分别占本地区苔藓植物总属数和总种数的55.88%和64.58%。在5种景观类型中,针叶林带和高山灌丛带分布的苔藓植物物种相似性最高(相似性系数为0.5357);河岸带和高山草甸带分布的苔藓植物物种相似性最低(为0),表现出祁连山地区苔藓植物分布的丰富性和复杂性;高山灌丛带分布的苔藓植物物种多样性指数最高,但针叶林带苔藓植物最为丰富,是祁连山苔藓物种多样性保护的关键区域。  相似文献   

10.
中国苔藓植物的地理分区及分布类型   总被引:19,自引:0,他引:19  
在对中国苔藓植物相关研究资料进行总结归纳的基础上,对中国苔藓植物的分区进行了重新划分,将最初的7个分区划分为10个分区,从华中区中分出华东区,由华北区中分出华西区,并将青藏区及云贵区内的云南西北部、四川西南部和西藏东南部组成单独的横断山区。就中国苔藓植物的分布类型及可能的分布路线也作了讨论,指出中国苔藓植物的分布路线有3条,一条是从喜马拉雅地区经滇西北、川西沿长江流域到中国的东南部;一条位于喜马拉雅、横断山区和台湾之间;第三条则从喜马拉雅地区通过秦岭直至长白山区。  相似文献   

11.
Herbivory can affect plant community composition and diversity by removing biomass and reducing light competition. Herbivory may particularly benefit low growing species such as bryophytes, which are frequently limited by light competition. Gastropods are important herbivores of seed plants and cryptogams, furthermore, they can disperse propagules such as seeds and spores via endozoochory. However, whether gastropod herbivory can reduce the dominance of vascular plants and thereby promote the germination and establishment of endozoochorously dispersed bryophyte spores has never been tested experimentally. Moreover, it is unclear whether these possible interacting effects can influence bryophyte species richness. Here, we tested for endozoochorous spore dispersal by slugs, in combination with sowing of vascular plants, in a fully factorial common garden experiment. Enclosures contained either slugs previously fed with bryophyte sporophytes, control slugs, or no slugs. After 21 days the bryophyte cover was on average 2.8 times higher (3.9% versus 1.4%) and after eight months the bryophyte species richness 2.6 times higher (5.8 versus 2.2) in enclosures containing slugs previously fed with bryophyte sporophytes than in the other treatments. Furthermore, after eight months high vascular plant cover reduced bryophyte diversity. On average enclosures without seed sowing harboured 1.6 times more bryophyte species than the ones with seed sowing (4.2 versus 2.6), indicating competitive effects of vascular plants on bryophytes. Our findings suggest that slugs are important dispersal vectors for bryophytes and that they can increase bryophyte populations and maintain bryophyte diversity by reducing the dominance of vascular plants.  相似文献   

12.
苔藓植物对植物天然更新的影响   总被引:10,自引:0,他引:10  
蔺菲  郝占庆  叶吉 《生态学杂志》2006,25(4):456-460
种子是天然更新的基础,幼苗和幼树的生长是天然更新过程中最敏感的阶段。苔藓植物作为许多生态系统的主要地被物,在维管植物天然更新过程中发挥着不容忽视的作用。在许多植被类型中,都有发育良好的苔藓群落,大量的研究证明它们的存在影响到维管植物的萌发、建成和生长,并且可能进一步影响到物种的共生,有一些种类甚至可能指示树种的更新。本文就苔藓植物对物种更新早期阶段的作用和影响进行了综述。包括苔藓植物的生理特性造成的微气候变化;苔藓群落对种子传播、萌发及幼苗建成的影响。并讨论了苔藓植物与更新物种的种间关系及其对幼苗生长的化感作用。  相似文献   

13.
In grassland communities vascular plants and bryophytes form two distinct layers. In order to understand the factors responsible for plant community structure, more information about interactions between these plant groups is needed. Often negative correlations between vascular plant and bryophyte covers have been reported, suggesting competition. Here we tested experimentally whether different grassland vascular plant species (Trifolium pratense, Festuca pratensis, Prunella vulgaris) had different influences on the cover of two bryophyte species (Rhytidiadelphus squarrosus, Brachythecium rutabulum). In a two-year garden pot experiment one bryophyte species and one vascular plant species were planted per pot. Bryophytes were planted at a constant density, vascular plants in four densities. The cover of both bryophyte species increased with increasing vascular plant cover, showing the facilitative effect of vascular plants through creating better microclimate, e.g., optimising temperature. Bryophyte responses to vascular plant species were species-specific. Festuca had significantly positive effects on both bryophyte species in the second year, and Trifolium on Brachythecium in both years, whereas Prunella had no significant effect on bryophytes. The facilitative effect of vascular plants was stronger at the second experimental year. In summary, the biotic effects between bryophytes and grassland vascular plants are species-specific and positive interactions are prevailing at low vascular plant densities.  相似文献   

14.
E. Aude  R. Ejrnæs 《Oikos》2005,109(2):323-330
A three-year multi-factorial microcosm experiment simulating fertilisation, defoliation and the composition of vascular vegetation in a dry grassland succession was used to test four hypotheses concerning the establishment and survival of bryophytes in grassland vegetation. H1: bryophyte cover may be used to predict bryophyte species richness. H2: bryophyte richness is suppressed at high nutrient levels and promoted by defoliation of vascular plants. H3: species richness of bryophytes is influenced by the species composition of the vascular vegetation. H4: bryophyte species richness is negatively correlated with vascular plant biomass.
The relationship between bryophyte richness and bryophyte cover was found to follow the classical species-area richness curve. Bryophyte species richness responded positively to defoliation and negatively to fertilisation. The species composition of vascular vegetation had no significant effect on bryophyte richness. Bryophyte species richness was lower at high vascular plant biomass and vascular plant dry weight above 400 g m−2 appeared fatal to bryophytes. At high nutrient levels, defoliation increased bryophyte richness, but defoliation did not fully compensate for the negative effect of fertilisation. The study reinforces the concern for short lived shuttle bryophytes in the agricultural landscape.  相似文献   

15.
Management of invasive alien plants in arid areas is complicated by the cryptic and stochastic nature of the invasion process, the low density of researchers, extension officers and farmers in these areas, the complex, delayed and sometimes, indirect, effects of alien invasive plants on these ecosystems, and by high and shifting values placed on goods and services derived from invasive alien plant species. Fluctuating vegetation cover together with convergent adaptations for dispersal and facilitation enables some desert aliens to invade intact vegetation. Invasive plants in arid areas are not all arid-adapted: the most problematic species globally are phreatic, wetland or oasis specialists that can colonise remote wetlands and springs through a combination of wind-dispersed seeds and vegetative reproduction. Their success is often linked to disturbance and facilitated by agricultural activities including water extraction, cropping and livestock management. Invasive alien plants in arid region wetlands have an impact on forage, water resources and biodiversity in these key resource areas, that is disproportionately great relative to the area they occupy. Management of arid region aliens could include pre-introduction biocontrol planning that makes it possible to use aliens while reducing invasion risks. An alternative is to replace the aliens with extralimital indigenous plants that can supply the rangeland services perceived to be absent from arid environments—but such interventions may carry even greater risks.  相似文献   

16.
《植物生态学报》2016,40(11):1189
Aims Leaf epidermal micromorphology is an important adaptation of desert plants to arid environment. A micromorphological analysis of leaf epidermal tissue of desert plants was carried out in order to obtain qualitative and quantitative data on epidermal characteristics and to evaluate the long-term adaptive strategy of desert plants to aridity in desert conditions.
Methods The leaf (or assimilation branches) materials were sampled for more than 200 natural populations of 117 desert plant species from 74 genera and 28 families, in arid and semi-arid areas of China. The characteristics of leaf epidermal micromorphology of desert plants were then measured by scanning electron microscopy (SEM). Characteristics of epidermal cell, trichome, stomatal, cuticular wax on adaxial and abaxial surface are presented.
Important findings Leaf epidermal micromorphology of desert plants showed abundant diversity in different classification levels. The desert plants adapted to environmental stress can be divided into 11 basic morphological types according to the structure of the epidermis, and their characteristics of leaf epidermal morphology were classfied into 6 main types according to the relationships between stress resistance and structural characteristics of epidermal micromorphology and their appendages. The main epidermal appendages of desert plants (such as trichome, cuticular wax) and epidermal structures (concave-convex and papillary structure, stomata) could cooperate with each other to improve the resistance of desert plants to drought and other adverse environmental stress by resisting the strong light and reducing leaf transpiration.  相似文献   

17.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

18.
The complexity of nature conservation raises questions about biodiversity protection at the level of species as well as their spatial distribution between differently designated nature conservation areas. We have concentrated on comparison of the existing protected areas and recently established conservation initiative areas—Important Plant Areas. We have estimated how well these areas support the protection of two plant groups—bryophytes and vascular plants. We sought answers to the following questions: (a) are there any trends in the distribution of protected bryophyte and vascular plant species in the protected areas network, and (b) does the Important Plant Areas network promote better protection of bryophyte species compared with the existing protected areas network. Our results demonstrated that bryophytes need special care in nature conservation decisions to reach the reasonable conservation target. Important Plant Areas that were targeted to vascular plants have less importance in preserving bryophyte diversity than already existing conservation areas system. Conservation programs like IBA, IPA etc. have their specific tool and outcome to add conservation values to the existing protected areas system.  相似文献   

19.
Soil crust lichens can be the dominant vegetation in desert regions that are unsuitable for higher plants, and are vital to soil stabilization and primary production. Biological soil crusts are vulnerable to disturbance and there is little evidence of the lichen components achieving full recovery following human disturbances in semi-arid to arid environments, and no records of recovery in hyper-arid deserts. Eight sites with varying anthropogenic, mechanical disturbance regimes were assessed in the hyper-arid Namib Desert for levels of recovery and successional convergence, based on a comparative analysis of overall lichen cover and community composition in disturbed and control locations. Recovery time estimations ranged from 5 to 530 years, with no detected linear relationship to impact gradient (low to high impact). Variables that were found to most strongly influence recovery rates were the overall cover of lichen growth and total number of lichen species in the bordering undisturbed areas, followed by the extent of soil compaction in the disturbed area, altered soil surface microrelief and vitality of subsurface soil crust components. An assessment of pioneering species demonstrated a link between increased soil depressions, i.e. track ruts, and the occurrence of fragmenting, wind-dispersing species. Track ruts in hype-arid deserts are not as vulnerable to the water erosion found in less arid deserts, and may be advancing recovery by trapping fragments. However, the lichen community structure was significantly different between all of the disturbed and control areas, regardless of the recovery phase, suggesting that while the lichen community composition may not. The ecological consequences of such disturbances may be far reaching in hyper-arid deserts where lichens are primary heterotrophs soil stabilizers. Given the economic development occurring within coastal hyper-acid deserts of the world, these impacts undoubtedly call for conservation attention.  相似文献   

20.
Aim To determine the environmental factors associated with bryophyte diversity in remnants in a fragmented, agricultural landscape. Location Eighty‐two remnants of tussock grassland, eucalypt woodland and eucalypt forest in the subhumid Midlands region of Tasmania, Australia. Methods Remnants were surveyed for bryophytes and predictor variables, such as vascular plant cover, climate, and topography. Management histories for each remnant were compiled using both site observation and landowner surveys. Bryophyte cover, richness, and composition were related to the independent variables using simple correlation and general linear models. Results We found weak relationships between the dependent variables and the fragmentation variables (remnant area, remnant perimeter to area ratio, distance to nearest remnant, distance to nearest larger remnant, and remnant age). Instead, climatic variables were important in predicting bryophytes, in particular those affecting humidity (minimum temperature of the coldest month, precipitation). Despite extensive sheep grazing in this landscape, grazing was not correlated with bryophyte diversity. Bryophyte diversity was not explained by vascular plant richness and was only weakly explained by composition, but was predicted by the cover of vascular plants. There was greater bryophyte cover and richness and different composition where the cover of native vascular plants was lower. Main conclusions The implications of our results are that all remnants, regardless of area, age and isolation, appear to be valuable for bryophyte conservation in this highly altered landscape. Our results also suggest that the cover of the vascular plant community, rather than its diversity, holds promise as a guide to bryophyte diversity. Bryophyte composition was similar between sites and a focus on the most species‐rich sites may be the best conservation strategy in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号