首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
The human (h) and rat (r) equilibrative (Na(+)-independent) nucleoside transporters (ENTs) hENT1, rENT1, hENT2, and rENT2 belong to a family of integral membrane proteins with 11 transmembrane domains (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine and coronary vasoactive drugs. Structurally, the proteins have a large glycosylated loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, hENT1, rENT1, hENT2, and rENT2 were produced in Xenopus laevis oocytes and investigated for their ability to transport pyrimidine and purine nucleobases. hENT2 and rENT2 efficiently transported radiolabeled hypoxanthine, adenine, guanine, uracil, and thymine (apparent K(m) values 0.7-2.6 mm), and hENT2, but not rENT2, also transported cytosine. These findings were independently confirmed by hypoxanthine transport experiments with recombinant hENT2 produced in purine-cytosine permease (FCY2)-deficient Saccharomyces cerevisiae and provide the first direct demonstration that the ENT2 isoform is a dual mechanism for the cellular uptake of nucleosides and nucleobases, both of which are physiologically important salvage metabolites. In contrast, recombinant hENT1 and rENT1 mediated negligible oocyte fluxes of hypoxanthine relative to hENT2 and rENT2. Chimeric experiments between rENT1 and rENT2 using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) identified TMs 5-6 of rENT2 (amino acid residues 172-231) as a determinant of nucleobase transport activity, suggesting that this domain forms part(s) of the ENT2 substrate translocation channel.  相似文献   

2.
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.  相似文献   

3.
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2' 3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine)and ddI (2' 3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction.  相似文献   

4.
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2'3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine) and ddI (2'3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction.  相似文献   

5.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

6.
The vesicular glutamate transporters (VGLUTs) are responsible for packaging glutamate into synaptic vesicles, and are part of a family of structurally related proteins that mediate organic anion transport. Standard computer-based predictions of transmembrane domains have led to divergent topological models, indicating the need for experimentally derived predictions. Here we present data on the topology of the VGLUT ortholog from Drosophila melanogaster (DVGLUT). Using immunofluorescence assays of DVGLUT transiently localized to the plasma membrane of heterologously transfected cells, we have determined the accessibility of epitope tags inserted into the lumenal/extracellular face of the protein. Using immunoisolation, we have identified complementary tagged sites that face the cytoplasm. Our data show that DVGLUT contains 10 hydrophobic regions that completely span the membrane (TMs 1-10) and that the amino and carboxyl termini are cytosolic. Importantly, between TMs 4 and 5 is an unforeseen cytosolic loop of some 50 residues. Other domains exposed to the cytosol include loops between TMs 6-7 and 8-9, and regions C-terminal to TM2 and N-terminal to TM3. Between TM2 and 3 is a potentially hydrophobic, but topologically ambiguous region. Lumenal domains include sequences between TMs 1-2, 3-4, 5-6, 7-8 and 9-10. These data provide a basis for determining structure-function relationships for DVGLUT and other related proteins.  相似文献   

7.
Previously, we have identified three Zn(2+) binding residues in an endogenous Zn(2+) binding site in the human dopamine transporter (hDAT): (193)His in extracellular loop 2 (ECL 2), (375)His at the external end of transmembrane segment (TM) 7, and (396)Glu at the external end of TM 8. Here we have generated a series of artificial Zn(2+) binding sites in a domain situated around the external ends of TMs 7 and 8 by taking advantage of the well-defined structural constraints for binding of the zinc(II) ion. Initially, we found that the Zn(2+)-coordinating (193)His in ECL 2 could be substituted with a histidine inserted at the i - 4 position relative to (375)His in TM 7. In this mutant (H193K/M371H), Zn(2+) potently inhibited [(3)H]dopamine uptake with an IC(50) value of 7 microM as compared to a value of 300 microM for the control (H193K). These data are consistent with the presence of an alpha-helical configuration of TM 7. This inference was further corroborated by the observation that no increase in the apparent Zn(2+) affinity was observed following introduction of histidines at the i - 2, i - 3, and i - 5 positions. In contrast, introduction of histidines at positions i + 2, i + 3, and i + 4 all resulted in potent inhibition of [(3)H]dopamine uptake by Zn(2+) (IC(50) = 3-32 microM). These observations are inconsistent with continuation of the helix beyond position 375 and indicate an approximate boundary between the end of the helix and the succeeding loop. In summary, the data presented here provide new insight into the structure of a functionally important domain in the hDAT and illustrate how engineering of Zn(2+) binding sites can be a useful approach for probing both secondary and tertiary structure relationships in membrane proteins of unknown structure.  相似文献   

8.
The equilibrative nucleoside transporters, hENT1 and CeENT1 from humans and Caenorhabditis elegans, respectively, are inhibited by nanomolar concentrations of dipyridamole and share a common 11-transmembrane helix (TM) topology. Random mutagenesis and screening by functional complementation in yeast for clones with reduced sensitivities to dipyridamole yielded mutations at Ile429 in TM 11 of CeENT1 and Met33 in TM 1 of hENT1. Mutational analysis of the corresponding residues of both proteins suggested important roles for these residues in competitive inhibition of hENT1 and CeENT1 by dipyridamole. To verify the roles of these residues in dipyridamole interactions, hENT2, which naturally exhibits low dipyridamole sensitivity, was mutated to contain side chains favorable for high affinity dipyridamole binding (i.e. a Met at the TM 1 and/or an Ile at the TM 11 positions). The single mutants exhibited increased hENT2 sensitivity to inhibition by dipyridamole, and the double mutant was the most sensitive, with an IC50 value that was only 2% of that of wild type. Functional analysis of the TM 1 and 11 mutants of hENT1 and CeENT1 revealed that Ala and Thr in the TM 1 and 11 positions, respectively, impaired uridine and adenosine transport and that Leu442 of hENT1 was involved in permeant selectivity. Mechanistic and structural models of dipyridamole interactions with the TM 1 and 11 residues are proposed. This study demonstrated that the corresponding residues in TMs 1 and 11 of hENT1, hENT2, and CeENT1 are important for dipyridamole interactions and nucleoside transport.  相似文献   

9.
From a mutagenized population of wild-type S49 T lymphoblasts, cells were selected for their ability to survive in semisolid medium containing 0.5 mM hypoxanthine, 0.4 microM methotrexate, 30 microM thymidine, 30 microM deoxycytidine, and 30 microM p-nitrobenzyl-6-thioinosine (NBMPR), a potent inhibitor of nucleoside transport. Unlike wild-type parental cells, two mutant clones, KAB1 and KAB5, were still sensitive to nucleoside-mediated cytotoxicity in the presence of NBMPR. Comparisons of the abilities of wild-type cells, KAB1, and KAB5 cells to incorporate exogenous nucleoside to the corresponding nucleoside triphosphate indicated that nucleoside incorporation was much less sensitive to inhibition by NBMPR in the mutant cells. Rapid transport studies indicated that the mutant cell lines, unlike the wild-type parent, had acquired an NBMPR-insensitive nucleoside transport component which was similar to the NBMPR-sensitive wild-type transporter with respect to affinities for nucleosides and sensitivities toward N-ethylmaleimide and dipyridamole. Binding studies with [3H]NBMPR indicated that KAB5 cells were 70-75% deficient in the number of NBMPR binding sites, whereas KAB1 cells possessed a wild-type complement of NBMPR binding sites with wild-type binding characteristics. These data suggest that the NBMPR binding site in wild-type S49 cells is genetically distinguishable from the nucleoside carrier site and that the former may be a regulatory site.  相似文献   

10.
The Na+/nucleoside cotransporters hCNT1 (650 residues) and hCNT2 (658 residues) are 72% identical in amino acid sequence and contain 13 putative transmembrane helices (TMs). Both transport uridine and adenosine but are otherwise selective for pyrimidine (system cit) and purine (system cif) nucleosides, respectively. Previously, we used site-directed mutagenesis and functional expression in Xenopus oocytes to identify two pairs of adjacent residues in TMs 7 and 8 of hCNT1 (Ser319-Gln320 and Ser353-Leu354) that, when converted to the corresponding residues in hCNT2 (Gly-Met and Thr-Val, respectively), changed the permeant selectivity of the transporter from cit to cif. We now report an investigation of the effects of corresponding mutations in TM 8 alone and demonstrate unique S353T- and L354V-induced changes in nucleoside specificity and cation coupling, respectively. hCNT1 mutation S353T produced a profound decrease in cytidine transport efficiency (Vmax/Km ratio) and, in combination with L354V (S353T/L354V), resulted in a novel uridine-preferring transport phenotype. In addition, the L354V mutation markedly increased the apparent affinity of hCNT1 for Na+ and Li+. Both hCNT1 TM 8 residues exhibited uridine-protectable inhibition by p-chloromercuribenzene sulfonate when converted to Cys, suggesting that they occupy positions within or closely adjacent to a common cation/nucleoside translocation pore.  相似文献   

11.
BACKGROUND: The transporter associated with antigen processing (TAP) is a heterodimeric member of the large family of ABC transporters. The study of interactions between the subunits TAP1 and TAP2 can reveal the relative orientation of the transmembrane segments, which form a translocation pore for peptides. This is essential for understanding the architecture of TAP and other ABC transporters. RESULTS: The amino-terminal six transmembrane segments (TMs) of human TAP1, TAP1 (1-6), and the amino-terminal five TMs of TAP2, TAP2(1-5), are thought to constitute the pore of TAP. Two new approaches are used to define dimer interactions. We show that TM6 of TAP1 (1-6) is able to change topology post-translationally. This TM, along with a cytoplasmic tail, is translocated into the endoplasmic reticulum lumen, unless TAP2 is expressed. Coexpression of TM(4-5) of TAP2 stabilizes the topology of TAP1 (1-6), even when the TM1 of TAP1 is subsitituted with another sequence. This suggests that the carboxy-terminal TMs of the pore-forming domains TAP1 (1-6) and TAP2(1-5) interact. An alternative assay uses photobleaching in living cells using TAP1 (1-6) tagged with the green fluorescent protein (GFP). Coexpression with TAP2(1-5) results in reduced movement of the heterodimer within the endoplasmic reticulum membrane, as compared with the single TAP1 (1-6) molecule. In contrast, TAP2(1-4) has no effect on the mobility of TAP1 (1-6)-GFP, indicating the importance of TM5 of TAP2 for dimer formation. Also, TM1 of both TAP1 and TAP2 is essential for formation of a complex with low mobility. CONCLUSIONS: Dimerization of the pore-forming transmembrane domains of TAP1 (TM1-6) with its TAP2 counterpart (TM1-5) prevents the post-translational translocation of TM6 of TAP1 and results in a complex with reduced mobility within the endoplasmic reticulum membrane compared with the free subunit. These techniques are used to show that the pore-forming domains of TAP are aligned in a head-head/tail-tail orientation. This positions the following peptide-binding segments of the two TAP subunits to one side of the pore.  相似文献   

12.
From a mutagenized population of wild type S49 T lymphoma cells, clones were generated that were resistant to the physiological effects of the potent inhibitor of nucleoside transport, 4-nitrobenzyl-6-thioinosine (NBMPR). These cells were selected for their ability to survive in semisolid medium containing 0.5 mM hypoxanthine, 0.4 microM methotrexate, 30 microM thymidine, 30 microM deoxycytidine, in the presence of 30 microM NBMPR. NBMPR protected wild type cells from the effects of a spectrum of cytotoxic nucleosides, whereas two mutant clones, KAB1 and KAB5, were still sensitive to nucleoside-mediated cytotoxicity in the presence of NBMPR. Comparisons of the abilities of wild type cells and mutant cells to incorporate exogenous nucleoside to the corresponding nucleoside triphosphate indicated that the KAB1 and KAB5 mutant cells were refractory to normal inhibition by NBMPR. Moreover, rapid transport studies indicated that mutant cells, unlike wild type parental cells, had acquired a substantial NBMPR-insensitive nucleoside transport component. Binding studies with [3H]NBMPR indicated that KAB5 cells were 70-75% deficient in the number of NBMPR binding sites, whereas KAB1 cells possessed a wild type complement of NBMPR binding sites. These data suggest that the NBMPR binding site in wild type S49 cells is genetically distinguishable from the nucleoside carrier site.  相似文献   

13.
Different transmembrane (TM) α helices are known to line the pore of the cystic fibrosis TM conductance regulator (CFTR) Cl(-) channel. However, the relative alignment of these TMs in the three-dimensional structure of the pore is not known. We have used patch-clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining first TM (TM1) of a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM1 residues K95, Q98, P99, and L102 when applied to the cytoplasmic side of open channels. Residues closer to the intracellular end of TM1 (Y84-T94) were not apparently modified by MTS reagents, suggesting that this part of TM1 does not line the pore. None of the internal MTS reagent-reactive cysteines was modified by extracellular [2-(trimethylammonium)ethyl] MTS. Only K95C, closest to the putative intracellular end of TM1, was apparently modified by intracellular [2-sulfonatoethyl] MTS before channel activation. Comparison of these results with recent work on CFTR-TM6 suggests a relative alignment of these two important TMs along the axis of the pore. This alignment was tested experimentally by formation of disulfide bridges between pairs of cysteines introduced into these two TMs. Currents carried by the double mutants K95C/I344C and Q98C/I344C, but not by the corresponding single-site mutants, were inhibited by the oxidizing agent copper(II)-o-phenanthroline. This inhibition was irreversible on washing but could be reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between the introduced cysteine side chains. These results allow us to develop a model of the relative positions, functional contributions, and alignment of two important TMs lining the CFTR pore. Such functional information is necessary to understand and interpret the three-dimensional structure of the pore.  相似文献   

14.
P-glycoprotein (P-gp) can transport a wide variety of cytotoxic compounds that have diverse structures. Therefore, the drug-binding domain of the human multidrug resistance P-gp likely consists of residues from multiple transmembrane (TM) segments. In this study, we completed cysteine-scanning mutagenesis of all the predicted TM segments of P-gp (TMs 1-5 and 7-10) and tested for inhibition by a thiol-reactive substrate (dibromobimane) to identify residues within the drug-binding domain. The activities of 189 mutants were analyzed. Verapamil-stimulated ATPase activities of seven mutants (Y118C and V125C (TM2), S222C (TM4), I306C (TM5), S766C (TM9), and I868C and G872C (TM10)) were inhibited by more than 50% by dibromobimane. The activities of mutants S222C (TM4), I306C (TM5), I868C (TM10), and G872C (TM10), but not that of mutants Y118C (TM2), V125C (TM2), and S776C (TM9), were protected from inhibition by dibromobimane by pretreatment with verapamil, vinblastine, or colchicine. These results and those from previous studies (Loo, T. W. and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948; Loo, T. W. and Clarke, D. M. (1999) J. Biol. Chem. 274, 35388-35392) indicate that the drug-binding domain of P-gp consists of residues in TMs 4, 5, 6, 10, 11, and 12.  相似文献   

15.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole.  相似文献   

16.
The human multidrug resistance P-glycoprotein (P-gp) pumps a wide variety of structurally diverse compounds out of the cell. It is an ATP-binding cassette transporter with two nucleotide-binding domains and two transmembrane (TM) domains. One class of compounds transported by P-gp is the rhodamine dyes. A P-gp deletion mutant (residues 1-379 plus 681-1025) with only the TM domains retained the ability to bind rhodamine. Therefore, to identify the residues involved in rhodamine binding, 252 mutants containing a cysteine in the predicted TM segments were generated and reacted with a thiol-reactive analog of rhodamine, methanethiosulfonate (MTS)-rhodamine. The activities of 28 mutants (in TMs 2-12) were inhibited by at least 50% after reaction with MTS-rhodamine. The activities of five mutants, I340C(TM6), A841C(TM9), L975C(TM12), V981C(TM12), and V982C(TM12), however, were significantly protected from inhibition by MTS-rhodamine by pretreatment with rhodamine B, indicating that residues in TMs 6, 9, and 12 contribute to the binding of rhodamine dyes. These results, together with those from previous labeling studies with other thiol-reactive compounds, dibromobimane, MTS-verapamil, and MTS-cross-linker substrates, indicate that common residues are involved in the binding of structurally different drug substrates and that P-gp has a common drug-binding site. The results support the "substrate-induced fit" hypothesis for drug binding.  相似文献   

17.
Hxt2 and Hxt1 are, respectively, high affinity and low affinity facilitative glucose transporter paralogs of Saccharomyces cerevisiae. We have previously investigated which amino acid residues of Hxt2 are important for high affinity transport activity. Studies with all the possible combinations of 12 transmembrane segments (TMs) of Hxt2 and Hxt1 revealed that TMs 1, 5, 7, and 8 of Hxt2 are necessary for high affinity transport. Systematic shuffling of the 20 amino acid residues that differ between Hxt2 and Hxt1 in these TMs subsequently identified 5 residues as important for such activity: Leu(59) and Leu(61) (TM1), Leu(201) (TM5), Asn(331) (TM7), and Phe(366) (TM8). We have now studied the relative importance of these 5 residues by individually replacing them with each of the other 19 residues. Replacement of Asn(331) yielded transporters with various affinities, with those of the Ile(331), Val(331), and Cys(331) mutants being higher than that of the wild type. Replacement of the Hxt2 residues at the other four sites yielded transporters with affinities similar to that of the wild type but with various capacities. A working homology model of the chimeric transporters containing Asn(331) or its 19 replacement residues indicated that those residues at this site that yield high affinity transporters (Ile(331), Val(331), Cys(331)) face the central cavity and are within van der Waals distances of Phe(208) (TM5), Leu(357) (TM8), and Tyr(427) (TM10). Interactions via these residues of the four TMs, which compose a half of the central pore, may thus play a pivotal role in formation of a core structure for high affinity transport.  相似文献   

18.
The human equilibrative nucleoside transporter, hENT1, which is sensitive to inhibition by nitrobenzylthioinosine (NBMPR), is expressed in a wide variety of tissues. hENT1 is involved in the uptake of natural nucleosides, including regulation of the physiological effects of extracellular adenosine, and transports nucleoside drugs used in the treatment of cancer and viral diseases. Structure-function studies have revealed that transmembrane domains (TMD) 3 through 6 of hENT1 may be involved in binding of nucleosides. We have hypothesized that amino acid residues within TMD 3-6, which are conserved across equilibrative transporter sequences from several species, may have a critical role in the binding and transport of nucleosides. Therefore, we explored the role of point mutations of two conserved glycine residues, at positions 179 and 184 located in transmembrane domain 5 (TMD 5), using a GFP-tagged hENT1 in a yeast nucleoside transporter assay system. Mutations of glycine 179 to leucine, cysteine, or valine abolished transporter activity without affecting the targeting of the transporter to the plasma membrane, whereas more conservative mutations such as glycine to alanine or serine preserved both targeting to the plasma membrane and transport activity. Similar point mutations at glycine 184 resulted in poor targeting of hENT1 to the plasma membrane and little or no detectable functional activity. Uridine transport by G179A mutant was significantly lower (p < 0.05) and less sensitive (p < 0.05) to inhibition by NBMPR when compared to the wild-type transporter (IC(50) 7.7 +/- 0.8 nM versus 46 +/- 14.6 nM). Based on these data, we conclude that when hENT1 is expressed in yeast, glycine 179 is critical not only to the ability of hENT1 to transport uridine but also as a determinant of hENT1 sensitivity to NBMPR. In contrast, glycine 184 is likely important in targeting the transporter to the plasma membrane. This is the first identification and characterization of a critical amino acid residue of hENT1 that is important in both nucleoside transporter function and sensitivity to inhibition by NBMPR.  相似文献   

19.
hENT1 (human equilibrative nucleoside transporter 1) is inhibited by nanomolar concentrations of various structurally distinct coronary vasodilator drugs, including dipyridamole, dilazep, draflazine, soluflazine and NBMPR (nitrobenzylmercaptopurine ribonucleoside). When a library of randomly mutated hENT1 cDNAs was screened using a yeast-based functional complementation assay for resistance to dilazep, a clone containing the W29G mutation was identified. Multiple sequence alignments revealed that this residue was highly conserved. Mutations at Trp29 were generated and tested for adenosine transport activity and inhibitor sensitivity. Trp29 mutations significantly reduced the apparent V(max) and/or increased the apparent K(m) values for adenosine transport. Trp29 mutations increased the IC50 values for hENT1 inhibition by dipyridamole, dilazep, NBMPR, soluflazine and draflazine. NBMPR and soluflazine displayed remarkably similar trends, with large aromatic substitutions at residue 29 resulting in the lowest IC50 values, suggesting that both drugs could interact via ring-stacking interactions with Trp29. The W29T mutant displayed a selective loss of pyrimidine nucleoside transport activity, which contrasts with the previously identified L442I mutant that displayed a selective loss of purine nucleoside transport. W29T, L442I and the double mutant W29T/L442I were characterized kinetically for nucleoside transport activity. A helical wheel projection of TM (transmembrane segment) 1 suggests that Trp29 is positioned close to Met33, implicated previously in nucleoside and inhibitor recognition, and that both residues line the permeant translocation pathway. The data also suggest that Trp29 forms part of, or lies close to, the binding sites for dipyridamole, dilazep, NBMPR, soluflazine and draflazine.  相似文献   

20.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号