首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antibodies were elicited to FAD by using the hapten N-6-(6-aminohexyl)-FAD conjugated to the immunogenic carrier protein bovine serum albumin. Cross-reactivity was determined by Ouchterlony double-diffusion analysis with N-6-(6-aminohexyl)-FAD coupled to rabbit serum albumin. Anti-FAD IgG was partially purified by (NH4)2SO4 precipitation followed by DEAE-cellulose/CM-cellulose and bovine serum albumin-agarose chromatography. The partially purified anti-FAD IgG fraction failed to inhibit the catalytic activities of the flavin-containing enzymes nitrate reductase, xanthine oxidase and succinate dehydrogenase, whereas enzyme activity could be inhibited by addition of antibodies elicited against the native proteins. However, the partially purified anti-FAD IgG fraction could be used as a highly sensitive and specific probe to detect proteins containing only covalently bound flavin, such as succinate dehydrogenase, p-cresol methylhydroxylase and monoamine oxidase, by immuno-blotting techniques. Detection limits were estimated to be of the order of femtomolar concentrations of FAD with increased sensitivity for the 8 alpha-N(3)-histidyl linkage compared with 8 alpha-O-tyrosyl substitution.  相似文献   

2.
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.  相似文献   

3.
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.  相似文献   

4.
The apoenzyme of D-amino acid oxidase from Rhodotorula gracilis was obtained at pH 7.5 by dialyzing the holoenzyme against 2 M KBr in 0.25 M potassium phosphate, 0.3 mM EDTA, 5 mM 2-mercaptoethanol and 20% glycerol. To recover a reconstitutable and highly stable apoprotein, it is essential that phosphate ions and glycerol be present at high concentrations. Apo-D-amino acid oxidase is entirely present as a monomeric protein, while the reconstituted holoenzyme is a dimer of 79 kDa. The equilibrium binding of FAD to apoprotein was measured from the quenching of flavin fluorescence and by differential spectroscopy: a Kd of 2.0 x 10(-8) M was calculated. The kinetics of formation of the apoprotein-FAD complex were studied by the quenching of protein and flavin fluorescence, by differential spectroscopy and by activity measurements. In all cases a two-stage process was shown to be present with a fairly rapid first phase, followed by a slow secondary change which represents only 4-6% of the total recombination process. In no conditions was a lag in the recovery of maximum catalytic activity observed. The process of FAD binding to yeast D-amino acid oxidase appears to be of the type Apo + FAD in equilibrium holoenzyme, even though the existence of a transient intermediate not detectable under our conditions cannot be ruled out.  相似文献   

5.
d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) is a flavoenzyme with high biotechnological and industrial interest. The overexpression and purification of the apoprotein form of a recombinant His-tagged TvDAAO allowed us to go deep into the structural differences between apoenzyme and holoenzyme, and on the cofactor binding and its contribution to enzyme stability. A significant decrease in intrinsic fluorescence emission took place upon FAD binding, associated to cofactor induced conformational transitions or subunit dimerization that could affect the local environment of protein tryptophan residues. Furthermore, acrylamide-quenching experiments indicated that one of the five tryptophan residues of TvDAAO became less accessible upon FAD binding. A K(d)=1.5+/-0.1x10(-7) M for the dissociation of FAD from TvDAAO was calculated from binding experiments based on both quenching of FAD fluorescence and activity titration curves. Secondary structure prediction indicated that TvDAAO is a mixed alpha/beta protein with 8 alpha-helices and 14 beta-sheets connected by loops. Prediction results were in good agreement with the estimates obtained by circular dichroism which indicated that both the apoenzyme and the holoenzyme had the same structural component ratios: 34% alpha-helix content, 20% beta-structure content (14% antiparallel and 6% parallel beta-sheet), 15% beta-turns and 31% of random structure. Circular dichroism thermal-transition curves suggested single-step denaturation processes with apparent midpoint transition temperatures (T(m)) of 37.9 degrees C and 41.4 degrees C for the apoenzyme and the holoenzyme, respectively. A three-dimensional model of TvDAAO built by homology modelling and consistent with the spectroscopic studies is shown. Comparing our results with those reported for pig kidney (pkDAAO) and Rhodotorula gracilis (RgDAAO) d-amino acid oxidases, a "head-to-head" interaction between subunits in the TvDAAO dimer might be expected.  相似文献   

6.
The NADPH-dependent superoxide-generating oxidase of pig neutrophils is activated by sodium dodecyl sulfate in a cell-free system. The activation requires both membrane and cytosolic components. The membrane component was effectively extracted with 0.75% octyl glucoside and the extract was fractionated by wheat-germ-agglutinin-agarose column chromatography. The chromatography resulted in loss of the O2--generating activity in the cell-free system. The activity, however, was restored by the reconstitution with the fraction which passed through the column (fraction A) and the one eluted with N-acetylglucosamine (fraction B) using an octyl glucose dilution procedure: both fractions were pre-mixed in the presence of 0.75% octyl glucoside and diluted by putting the mixture into the detergent-free assay mixture. The latter fraction was copurified with cytochrome b558, the content of which is 2.12 +/- 0.53 nmol/mg protein (mean +/- SD, n = 5). The potency of fraction B in the reconstitution of the O2--generating activity was lost by heat treatment and decreased by protease treatment, whereas that of fraction A was not affected. Fraction A in the reconstitution of the O2--generating activity was replaced by lipid extracted from fraction A, furthermore, by exogenous phospholipid, azolectin. The O2--generating activity reconstituted with azolectin and the partially purified component in fraction B was dependent on SDS, cytosol and the concentrations of azolectin and FAD. The activity was sensitive to p-chloromercuribenzoate but not to azide. The maximal activity was obtained at pH 7.0-7.5. The Km values for NADPH and NADH were 0.024 mM and 0.57 mM, respectively. These properties were consistent with those of the NADPH oxidase responsible for the respiratory burst. The activity in the reconstitution system was 20.5 +/- 3.5 mumol O2-.min-1.mg-1 membrane-derived protein (mean +/- SD, n = 5) which shows that the membrane component was purified about 100-fold. These findings indicate that cytochrome b558 is probably a membrane component of the O2--generating NADPH oxidase and its activation in the cell-free system requires the reconstitution with phospholipids.  相似文献   

7.
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment.  相似文献   

8.
A generic approach for flavoenzyme immobilization was developed in which the flavin cofactor is used for anchoring enzymes onto the carrier. It exploits the tight binding of flavin cofactors to their target apo proteins. The method was tested for phenylacetone monooxygenase (PAMO) which is a well-studied and industrially interesting biocatalyst. Also a fusion protein was tested: PAMO fused to phosphite dehydrogenase (PTDH-PAMO). The employed flavin cofactor derivative, N6-(6-carboxyhexyl)-FAD succinimidylester (FAD*), was covalently anchored to agarose beads and served for apo enzyme immobilization by their reconstitution into holo enzymes. The thus immobilized enzymes retained their activity and remained active after several rounds of catalysis. For both tested enzymes, the generated agarose beads contained 3 U per g of dry resin. Notably, FAD-immobilized PAMO was found to be more thermostable (40% activity after 1 h at 60 °C) when compared to PAMO in solution (no activity detected after 1 h at 60 °C). The FAD-decorated agarose material could be easily recycled allowing multiple rounds of immobilization. This method allows an efficient and selective immobilization of flavoproteins via the FAD flavin cofactor onto a recyclable carrier.  相似文献   

9.
Flavin adenine dinucleotide (FAD) and glucose oxidase were adsorbed on medium porosity spectroscopic graphite (SG) and on low porosity glassy carbon (GC) with retention of electrochemical activity, as measured by cyclic and differential pulse voltammetry. Adsorption on the SG was very strong, while that on GC was much weaker. Enzyme activity could be partially restored by the addition of the apoenzyme of glucose oxidase to the SG-adsorbed FAD preparation. The holoenzyme of glucose oxidase also was adsorbed on SG with retention of enzyme activity. The mechanism for the reconstitution of active enzyme from adsorbed FAD and soluble apoenzyme is not clear. The data suggest that the reconstituted enzyme stays adsorbed to the SG, but it is not clear whether the FAD or protein portions (or both) are adsorbed after reconstitution. The data also indicate that substrate mass transfer resistance may be important with the reconstituted-adsorbed enzyme.  相似文献   

10.
The FAD binding site of human liver monoamine oxidase A (MAO A) has been investigated by mutagenesis of the amino acid site of covalent FAD attachment (Cys-406) to an alanyl residue. Expression of the C406A mutant in Saccharomyces cerevisiae results in the formation of an active enzyme, as found previously with the rat liver enzyme. The activity of this mutant enzyme is labile to solubilization, thus requiring all experiments to be done with membrane preparations. C406A MAO A was expressed in a rib 5(-) strain of S. cerevisiae in the presence of 16 different riboflavin analogues. Inactive apoC406A MAO A is formed by induction of the enzyme in the absence of riboflavin. FAD but not FMN or riboflavin restores catalytic activity with an apparent K(d) of 62 +/- 5 nm. The results from both in vivo and in vitro reconstitution experiments show increased activity levels (up to approximately 7-fold higher) with those analogues exhibiting higher oxidation-reduction potentials than normal flavin and decreased activity levels with analogues exhibiting lower potentials. Analogues with substituents on the pyrimidine ring bind to C406A MAO A more weakly than normal FAD, suggesting specific interactions with the N(3) and N(1) positions. Analogues with substituents in the 7 and 8 positions bind to C406A MAO A with affinities comparable with that of normal FAD. These results are discussed in regard to functional significance of 8alpha-covalent binding of flavins to proteins.  相似文献   

11.
L-Aspartate oxidase is a flavoprotein catalyzing the first step in the de novo biosynthesis of pyridine nucleotides in E. coli. Binding of FAD to L-aspartate oxidase is relatively weak (K d 6.7 × 10–7 M), resulting in partial loss of the coenzyme under many experimental conditions. Only the three-dimensional structure of the apo-enzyme has been obtained so far. In order to probe the flavinbinding site of the enzyme, apo-L-aspartate oxidase has been reacted with N6-(6-carboxyhexyl)-FAD Succinimidoester. The structural characterization of the resulting N6-(6-carbamoylxyhexyl)-FAD-L-aspartate oxidase shows the covalent incorporation of 1 FAD-analog/ monomer. Residue Lys38 was identified as the target of the covalent modification. N6-(6-carbamoylxyhexyl)-FAD-L-aspartate oxidase shows only 2% catalytic activity as compared to the native enzyme. Comparison of some properties of the flavinylated and native enzymes suggests that, although the flavin is covalently bound to the former in the region predicted from molecular modeling studies, the microenvironment around the isoallossazine is different in the two forms.  相似文献   

12.
FAD-modified human glutathione reductases were reconstituted from apoenzyme using the FAD analogues 6-SH-FAD, 6-SCN-FAD, 6-OH-FAD, 6-NH2-FAD and 8-OH-FAD. The catalytic activities of the modified enzymes were substantially lower than for the native enzyme. All five species could be crystallized, but only those containing 6-SH-FAD, 6-OH-FAD and 6-NH2-FAD yielded crystals that could be analyzed. X-ray analyses and structural refinements were performed at 0.27 nm and 0.30 nm resolution resulting in R factors around 13.5%. The crystal structures showed the additional non-hydrogen atoms and small conformational changes of the polypeptide that were obviously induced by the substituents of the FAD analogues. The observed changes together with spectroscopic and activity data permit some conclusions about the chemical nature of the substituents.  相似文献   

13.
Efimov I  McIntire WS 《Biochemistry》2004,43(32):10532-10546
The spectral and redox properties are described for the wild-type and Y384F mutant forms of the flavoprotein component (PchF) of flavocytochrome, p-cresol methylhydroxylase (PCMH), and cytochrome-free PchF that harbor FAD analogues. The analogues are iso-FAD (8-demethyl-6-methyl-FAD), 6-amino-FAD (6-NH(2)-FAD), 6-bromo-FAD (6-Br-FAD), 8-nor-8-chloro-FAD (8-Cl-FAD), and 5-deaza-5-carba-FAD (5-deaza-FAD). All of the analogues bound noncovalently and stoichiometrically to cytochrome-free apo-PchF, and the resulting holoproteins had high affinity for the cytochrome subunit, PchC. Noncovalently bound FAD, 6-Br-FAD, or 6-NH(2)-FAD can be induced to bind covalently by exposing holo-PchF to PchC. The rate of this process and the redox potential of the noncovalently bound flavin may be correlated. In addition, the redox potential of each FAD analogue was higher when it was covalently bound than when noncovalently bound to PchF. Furthermore, the potential of a covalently bound or noncovalently bound FAD analogue increased on association of the corresponding holo-PchF with PchC, and the activity increased as the flavin's redox potential increased. It was discovered also that 4-hydroxybenzaldehyde, the final p-cresol oxidation product, is an efficient competitive inhibitor for substrate oxidation by PchF since it binds tightly to this protein when the flavin is oxidized, although it binds more loosely to the enzyme with reduced flavin. Finally, the energies of the charge-transfer bands for the interaction of bound flavin analogues with 4-Br-phenol (a substrate mimic) increased as the potential decreases, although a simple global correlation was not seen. This is the case because the energy is also a function of the redox properties of the bound mimic. The implications of these findings to covalent flavinylation and catalysis are discussed.  相似文献   

14.
Autoflavinylation of apo6-hydroxy-D-nicotine oxidase   总被引:2,自引:0,他引:2  
6-Hydroxy-D-nicotine oxidase (6-HDNO) was expressed in Escherichia coli JM109 cells from the recombinant plasmid pAX-6-HDNO as a beta-galactosidase-6-HDNO fusion protein. Affinity chromatography of the fusion protein on p-aminobenzyl-1-thio-beta-galactopyranoside-agarose and subsequent digestion with protease Xa yielded highly purified apo6-HDNO. Incubation of the purified protein with [14C]FAD demonstrated that flavinylation of apo6-HDNO proceeds autocatalytically. Phosphorylated three-carbon compounds such as glycerol-3-P, which are known to stimulate the formation of the histidyl (N3)-(8 alpha) FAD between apo6-HDNO and FAD (Brandsch, R., and Bichler, V. (1989) Eur. J. Biochem. 182, 125-128), could be replaced in their action by high concentrations of glycerol (45%) or sucrose (20%). These substances apparently induced and stabilized a conformational state of the apoenzyme compatible with covalent attachment of FAD. In the absence of glycerol the apoenzyme readily lost the ability to form holoenzyme at temperatures above 30 degrees C. Holoenzyme formation protected the 6-HDNO polypeptide from this thermal denaturation. Autoflavinylation of 6-HDNO was inhibited by the sulfhydryl reagents dithionitrobenzoate or N-ethylmaleimide. Inhibition was prevented by mercaptoethanol or FAD, but not 6-hydroxy-D-nicotine, the substrate of the holoenzyme. A cysteine-thiol group may therefore be involved in reactions leading to the covalent attachment of FAD to apo6-HDNO. When flavinylation of apo6-HDNO proceeded under anaerobic conditions, the amount of incorporation of [14C]FAD into the polypeptide was indistinguishable from reactions performed in the presence of O2. None of the FAD-derivatives (8-demethyl-FAD, 8-chloro-FAD, and 5-deaza-FAD) could replace FAD in holoenzyme formation. The failure of covalent attachment of 5-deaza-FAD to apo6-HDNO is in agreement with the assumption that the quinone methide form of the isolloxazine ring is an intermediate in the flavinylation reaction.  相似文献   

15.
1. Two adenine nucleotides, 8-(6-aminohexyl)aminoadenosine 3':5'-cyclic monophosphate and 8-(6-aminohexyl)amino-AMP, were synthesized. Their structures were established in particular by using mass spectroscopy. 2. Free cyclic AMP and 8-(6-aminohexyl)amino cyclic AMP both stimulate protamine kinase activity at low concentrations, but are inhibitory at concentrations above 0.1mm. AMP is an inhibitor of enzymic activity, whereas neither 8-(6-aminohexyl)amino-AMP nor the earlier synthesized N(6)-(6-aminohexyl)-AMP is inhibitory. 3. The nucleotides were coupled to Sepharose 4B and used for biospecific chromatography of partially purified protamine kinase. Enzyme applied at high buffer concentrations to the cyclic AMP-Sepharose material was retarded and thereby purified tenfold. At low buffer concentrations the enzyme was adsorbed to the affinity material, and was subsequently released by a pulse of the inhibitor AMP, yielding a 50-100-fold purification. Enzyme applied to immobilized 8-(6-aminohexyl)amino-AMP or N(6)-(6-aminohexyl)-AMP was eluted together with the main protein peak in the void volume. 4. Protamine kinase eluted from 8-(6-aminohexyl)amino cyclic AMP-Sepharose was no longer activated by cyclic AMP. Results from sucrose gradient centrifugation suggest that a dissociation of the enzyme took place on the immobilized nucleotide. 5. Further information on the mass spectroscopy has been deposited as Supplementary Publication SUP 50026 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

16.
The effect of antibodies against progesterone on catalytic properties of glucose-6-phosphate dehydrogenase and its conjugates with progesterone was studied in the buffered physiological solution, pH 7.4. The conjugates contained 1-20 molecules of the steroid per enzyme molecule. At small degrees of the enzyme modification its activity increased in case of excess antibodies, while the catalytic activity of the conjugate with 20 progesterone molecules decreased twice under the same conditions. Change in the catalytic activity of glucose-6-phosphate dehydrogenase conjugates with 20 progesterone molecules was studied in Aerosol OT and Triton X-45 reversed micelles in heptane in the presence of antibodies against progesterone or a nonspecific antiserum (rabbit immunoglobulins). Both the antisera increased the conjugate activity at 25 degrees, 6% volume of the micelle polar phase, and short incubation, while at 35 degrees, 12% volume of the polar phase and long incubation the antibodies against progesterone significantly decreased the conjugate activity.  相似文献   

17.
The identification of hereditary familial Alzheimer disease (FAD) mutations in the amyloid precursor protein (APP) and presenilin-1 (PS1) corroborated the causative role of amyloid-β peptides with 42 amino acid residues (Aβ42) in the pathogenesis of AD. Although most FAD mutations are known to increase Aβ42 levels, mutations within the APP GxxxG motif are known to lower Aβ42 levels by attenuating transmembrane sequence dimerization. Here, we show that aberrant Aβ42 levels of FAD mutations can be rescued by GxxxG mutations. The combination of the APP-GxxxG mutation G33A with APP-FAD mutations yielded a constant 60% decrease of Aβ42 levels and a concomitant 3-fold increase of Aβ38 levels compared with the Gly33 wild-type as determined by ELISA. In the presence of PS1-FAD mutations, the effects of G33A were attenuated, apparently attributable to a different mechanism of PS1-FAD mutants compared with APP-FAD mutants. Our results contribute to a general understanding of the mechanism how APP is processed by the γ-secretase module and strongly emphasize the potential of the GxxxG motif in the prevention of sporadic AD as well as FAD.  相似文献   

18.
Miyano K  Fukuda H  Ebisu K  Tamura M 《Biochemistry》2003,42(1):184-190
Activation of the phagocyte NADPH oxidase occurs via assembly of cytosolic p47(phox), p67(phox), and Rac with the membrane-bound flavocytochrome b(558). Recently, we have found that p67(phox)-(1-210) (p67N) fused with p47(phox)-(1-286) (p47N) or with Rac efficiently stabilizes the oxidase in a cell-free reconstitution system. In an attempt to further stabilize the oxidase, we herein used a constitutively active Rac, RacQ61L, and examined its effect on the oxidase stability. The half-life (t(1/2)) of the activity reconstituted with wild-type Rac was 12 min at 37 degrees C, which was extended 6-fold by RacQ61L. Also, the stability of the oxidase without p47(phox) increased 8-fold using RacQ61L. RacQ61L had a higher affinity for the complex than wild-type Rac and increased the affinity of p67N for the complex. Far-western blotting showed an enhanced binding between RacQ61L and p67N. The oxidase was stabilized by nanomolar FAD, and RacQ61L lowered the FAD concentration required. The combination of RacQ61L and a fusion protein consisting of p67N and p47N produced an extremely stable enzyme (t(1/2) = 184 min at 37 degrees C). The effectiveness of RacQ61L and fusion proteins on stabilization was in the following order: p67N-Rac < p67N + RacQ61L < or = p67N-RacQ61L < p67N-p47N + RacQ61L. These results indicate that a tightly bound ternary complex of p67(phox), Rac, and p47(phox) is very effective in maintaining the oxidase and confirm that the longevity of the activated state requires continuous association of these components. This simple and efficient method of stabilization may provide a useful tool to elucidate the nature of the activated oxidase.  相似文献   

19.
The flavoenzyme d-aspartate oxidase from beef kidney (DASPO, EC 1.4. 3.1) has been overexpressed in Escherichia coli. A purification procedure, faster than the one used for the enzyme from the natural source (bDASPO), has been set up yielding about 2 mg of pure recombinant protein (rDASPO) per each gram of wet E. coli paste. rDASPO has been shown to possess the same general biochemical properties of bDASPO, except that the former contains only FAD, while the latter is a mixture of two forms, one active containing FAD and one inactive containing 6-OH-FAD (9-20% depending on the preparation). This results in a slightly higher specific activity (about 15%) for rDASPO compared to bDASPO and in facilitated procedures for apoprotein preparation and reconstitution. Redox potentials of -97 mV and -157 mV were determined for free and l-(+)-tartrate complexed DASPO, respectively, in 0.1 M KPi, pH 7.0, 25 degrees C. The large positive shift in the redox potential of the coenzyme compared to free FAD (-207 mV) is in agreement with similar results obtained with other flavooxidases. rDASPO has been used to assess a possible oxidative activity of the enzyme towards a number of compounds used as agonists or antagonists of neurotransmitters, including d-aspartatic acid, d-glutamic acid, N-methyl-d-aspartic acid, d,l-cysteic acid, d-homocysteic acid, d, l-2-amino-3-phosphonopropanoic acid, d-alpha-aminoadipic acid, d-aspartic acid-beta-hydroxamate, glycyl-d-aspartic acid and cis-2, 3-piperidine dicarboxylic acid. Kinetic parameters for each substrate in 50 mM KPi, pH 7.4, 25 degrees C are reported.  相似文献   

20.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号