首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring floristic homogenization by non-native plants in North America   总被引:5,自引:1,他引:4  
Aim To determine if non‐native plant species are homogenizing species composition among widely dispersed plant communities. Location Twenty localities in North America. Methods Species lists among localities were compared to measure the influence of non‐native species richness at each locality on the Jaccard Index (JI) of similarity between localities. Results After removing the effects of distance, because shared native species decreased with distance, three (nonexclusive) lines of evidence indicate that non‐native species promote homogenization. First, pairs of sites with a high combined total of non‐native species tend to have higher similarity than those with a low total of non‐natives. Second, for a given distance, more non‐native than native species tended to be shared among localities. Third, whereas most of the site comparisons with high total non‐native richness have a non‐native/native JI ratio greater than 1 (often much greater), only half of the comparisons with low total non‐native richness have a ratio greater than one. Main conclusions These findings provide quantitative support for the widely held, but rarely tested, notion that non‐native species tend to homogenize biological communities because they are more commonly shared among communities. Such testing is important as non‐native species could theoretically have no impact or even reduce homogenization among communities, if non‐native colonizers consist of different species pools.  相似文献   

2.
Cities are growing rapidly, thereby expected to cause a large‐scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non‐native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large‐scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non‐native species did not affect species turnover of the insect groups. However, given non‐native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large‐scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity.  相似文献   

3.
Anthropogenic activities have weakened biogeographical barriers to dispersal resulting in the global spread and establishment of an increasing number of non‐native species. We examine the broad‐scale consequences of this phenomenon based on an analysis of compositional similarity across urban floras in the northeastern United States and Europe. We test the prediction that homogenization of species composition is uniquely defined within vs. between continents based on the time and place of origin of non‐native species. In this case, for archaeophytes and neophytes in Europe (introduced before and after ad 1500, respectively) and non‐native species originating from within and outside the United States. More species in urban floras were shared within than between continents. Within Europe, archaeophytes shared more species across urban floras compared with neophytes; strong associations were not observed for non‐native species across US urban floras. Between the two continents, non‐native species in the United States that originated from outside the United States shared species primarily with archaeophytes but also with European natives and neophytes. These results suggest that the direction of biotic interchange was unidirectional with species moving primarily from Europe to the United States with archaeophytes playing a primary and non‐native species originating from outside the two continents a secondary role as a homogenizing source. Archaeophytes, based on combination of biogeographical, evolutionary, and ecological factors in association with a long history of anthropogenic influence, appear to have played a prominent role in the continental and intercontinental homogenization of species composition. This suggests that the uniform homogenization of the Earth's biota is not imminent and is presently directed by a combination of biogeographically defined anthropogenic and historical factors.  相似文献   

4.
Biotic homogenization is occurring in many biota as widespread introduced species are replacing unique native species. Although efforts to document homogenization have increased, no studies have explicitly compared the homogenizing effects of species introduced from distant areas to the homogenizing effects of species introduced from more proximate areas. The author analysed three data sets, at different scales and in different taxa, that distinguish species introduced from distant sources (e.g. outside the US) from species introduced from less distant sources (e.g. within the United States). These data include: plant introductions among eight major US cities and fish introductions among 12 US states and among 10 watersheds from New York state. The authors found that, for all data sets, species introduced from less distant sources (within the US) have a greater homogenizing effect on community composition than species from more distant sources (outside the US). In agreement with other studies, the author also find that, in terms of absolute numbers, introductions from nearby sources are far more frequent than introduction of species from distant sources. While tentative, these findings point out the importance of considering species introduced from nearby areas (e.g., extralimital native species) when discussing biotic homogenization from human activities.  相似文献   

5.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America.  相似文献   

6.
This study aims to examine the effects of introduced species on increasing (homogenizing) or decreasing (differentiating) floristic similarity of plant composition. We calculated the Jaccard index for each pair of counties within two states of USA, California and Florida. We computed the Jaccard index separately for all (native plus exotic) species, for native species, and for exotic species. We further calculated a homogenization index between all species and native species for each pair of counties by subtracting similarity index for native species from that for all species. We correlated the Jaccard and homogenization indices to geographic distance, latitude separation, and longitude separation between pairs of counties and to average human population density and average land area of the two counties. We find a very strong pattern of differentiation for introduced species among nearly all Florida counties. In California, introduced species have a differentiating effect in about half the comparisons. We also find that introduced species tend to have a more homogenizing (or less differentiating) effect with increasing distances between counties. Our results do not show a clear relationship between human population density and the homogenization index.  相似文献   

7.
Aim Increasing threats to freshwater biodiversity are rapidly changing the distinctiveness of regional species pools and local assemblages. Biotic homogenization/differentiation processes are threatening the integrity and persistence of native biodiversity patterns at a range of spatial scales and pose a challenge for effective conservation planning. Here, we evaluate the extent and determinants of fine‐scale alteration in native freshwater fish assemblages among stream reaches throughout a large river basin and consider the implications of these changes for the long‐term conservation of native fishes. Location Guadiana River basin (South‐Western Iberian Peninsula). Methods We quantified the magnitude of change in compositional similarity between observed and reference assemblages and its potential effect on natural patterns of compositional distinctiveness. Reference assemblages were defined as the native species expected to occur naturally (in absence of anthropogenic alterations) and were reconstructed using a multivariate adaptive regression splines predictive model. We also evaluated the role of habitat degradation and introduced species as determinants of biotic homogenization/differentiation. Results We found a significant trend towards homogenization for native fish assemblages. Changes in native fish distributions led to the loss of distinctiveness patterns along natural environmental gradients. Introduced species were the most important factor explaining the homogenization process. Homogenization of native assemblages was stronger in areas close to reservoirs and in lowland reaches where introduced species were more abundant. Main conclusions The implementation of efficient conservation for the maintenance of native fish diversity is seriously threatened by the homogenization processes. The identification of priority areas for conservation is hindered by the fact that the most diverse communities are vanishing, which would require the selection of broader areas to adequately protect all the species. Given the principal role that introduced species play in the homogenization process and their relation with reservoirs, special attention must be paid to mitigating or preventing these threats.  相似文献   

8.
Questions: 1. What are the distribution and habitat associations of non‐native (neophyte) species in riparian zones? 2. Are there significant differences, in terms of plant species diversity, composition, habitat condition and species attributes, between plant communities where non‐natives are present or abundant and those where non‐natives are absent or infrequent? 3. Are the observed differences generic to non‐natives or do individual non‐native species differ in their vegetation associations? Location: West Midlands Conurbation (WMC), UK. Methods: 56 sites were located randomly on four rivers across the WMC. Ten 2 m × 2 m quadrats were placed within 15 m of the river to sample vegetation within the floodplain at each site. All vascular plants were recorded along with site information such as surrounding land use and habitat types. Results: Non‐native species were found in many vegetation types and on all rivers in the WMC. There were higher numbers of non‐natives on more degraded, human‐modified rivers. More non‐native species were found in woodland, scrub and tall herb habitats than in grasslands. We distinguish two types of communities with non‐natives. In communities colonized following disturbance, in comparison to quadrats containing no non‐native species, those with non‐natives had higher species diversity and more forbs, annuals and shortlived monocarpic perennials. Native species in quadrats containing non‐natives were characteristic of conditions of higher fertility and pH, had a larger specific leaf area and were less stress tolerant or competitive. In later successional communities dominated by particular non‐natives, native diversity declined with increasing cover of non‐natives. Associated native species were characteristic of low light conditions. Conclusions: Communities containing non‐natives can be associated with particular types of native species. Extrinsic factors (disturbance, eutrophication) affected both native and non‐native species. In disturbed riparian habitats the key determinant of diversity is dominance by competitive invasive species regardless of their native or non‐native origin.  相似文献   

9.
《Global Change Biology》2018,24(5):1904-1918
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat‐forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta‐diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance‐ and incidence‐based beta‐diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within‐region comparisons using abundance‐ and incidence‐based measures of beta‐diversity, and in across‐region comparisons using incidence‐based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta‐diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land‐ and seascapes, as well as managing anthropogenic impacts in high activity areas.  相似文献   

10.
The biotic resistance hypothesis predicts that diverse native communities are more resistant to invasion. However, past studies vary in their support for this hypothesis due to an apparent contradiction between experimental studies, which support biotic resistance, and observational studies, which find that native and non‐native species richness are positively related at broad scales (small‐scale studies are more variable). Here, we present a novel analysis of the biotic resistance hypothesis using 24 456 observations of plant richness spanning four community types and seven ecoregions of the United States. Non‐native plant occurrence was negatively related to native plant richness across all community types and ecoregions, although the strength of biotic resistance varied across different ecological, anthropogenic and climatic contexts. Our results strongly support the biotic resistance hypothesis, thus reconciling differences between experimental and observational studies and providing evidence for the shared benefits between invasive species management and native biodiversity conservation.  相似文献   

11.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

12.
To answer the long‐standing question if we can predict plant invader success based on characteristics of the environment (invasibility) or the invasive species (invasiveness), or the combination of both, there is a need for detailed observational studies in which habitat properties, non‐native plant traits, and the resulting invader success are locally measured. In this study, we assess the interaction of gradients in the environmental and trait space on non‐native species fitness, expressed as seed production, for a set of 10 invasive and noninvasive non‐native species along a wide range of invaded sites in Flanders. In our multidimensional approach, most of the single environmental gradients (temperature, light availability, native plant species diversity, and soil fertility) and sets of non‐native plant traits (plant size, photosynthesis, and foliar chemical attributes) related positively with invader seed production. Yet correlation with seed production was much stronger when several environmental gradients were assessed in interaction, and even more so when we combined plant traits and habitat properties. The latter increased explanatory power of the models on average by 25% for invasive and by 7% for noninvasive species. Additionally, we report a 70‐fold higher seed production in invasive than in noninvasive species and fundamentally different correlations of seed production with plant traits and habitat properties in noninvasive versus invasive species. We conclude that locally measured traits and properties deserve much more attention than they currently get in invasion literature and thus encourage further studies combining this level of detail with the generality of a multiregion and multispecies approach across different stages of invasion.  相似文献   

13.
Models predict that community invasibility generally declines with species diversity, a prediction confirmed by small‐scale experiments. Large‐scale observations and experiments, however, find that diverse communities tend to be more heavily invaded than simple communities. One hypothesis states that large‐scale environmental heterogeneity, which similarly influences native and invasive species, can cause a positive correlation between diversity and invasibility, overriding the local negative effects of diversity on invasibility. We tested this hypothesis using aquatic microbial communities consisting of protists and rotifers consuming bacteria and nanoflagellates. We constructed a productivity gradient to simulate large‐scale environmental heterogeneity, started communities with the same number of species along this gradient, and subjected equilibrial communities to invasion by non‐resident consumer species. Both invaders and most resident species increased their abundances with resource enrichment, resulting in a positive correlation between diversity and invasibility. Intraspecific interference competition within resident species and the positive effect of enrichment on the number of available resources probably accounted for the higher invasibility with enrichment. Our results provide direct experimental evidence that environmental heterogeneity in productivity can cause a positive diversity–invasibility relationship.  相似文献   

14.
15.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

16.
Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of ‘invasion success’ in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non‐native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant‐soil fungi and plant allelochemical interactions on invasion success were species‐specific.  相似文献   

17.
Locally adapted populations are often used as model systems for the early stages of ecological speciation, but most of these young divergent populations will never become complete species. The maintenance of local adaptation relies on the strength of natural selection overwhelming the homogenizing effects of gene flow; however, this balance may be readily upset in changing environments. Here I show that soapberry bugs (Jadera haematoloma) have lost adaptations to their native host plant (Cardiospermum corindum) and are regionally specializing on an invasive host (Koelreuteria elegans), collapsing a classic and well‐documented example of local adaptation. All populations that were adapted to the native host—including those still found on that host today—are now better adapted to the invasive host in multiple phenotypes. Weak differentiation remains in two traits, suggesting that homogenization across the region is incomplete. This study highlights the potential for adaptation to invasive species to disrupt native communities by swamping adaptation to native conditions through maladaptive gene flow.  相似文献   

18.
The aim was to assess patterns of plant diversity in response to elevation and disturbance in a tropical mountain. The study area was located in north‐central portion of the Eastern Cordillera of the Ecuadorian Andes, on a road from 1,150 m a.s.l. (Osayacu) to 4,000 (Papallacta). Along a mountain road spanning a wide altitudinal gradient, at 20 elevations we sampled three plots: one at the roadside and two perpendicular to the roadside. The relationship between elevation and species richness was assessed using linear and quadratic regressions, the effect of disturbance on species richness was determined by ANCOVA and a t test with parameters obtained from quadratic equations. Similarity of species composition among the roadside and sites distant was evaluated with the Chao‐Jaccard and classic Jaccard similarity indices, the distribution of non‐native species according to their origin were analyzed with linear and quadratic regression. The native species showed a linearly monotonic decrease with elevation, whereas non‐natives showed a quadratic distribution. Disturbed areas had the greatest number of non‐native species and lower native species richness, showing also a high floristic similarity; less disturbed areas showed the opposite. The non‐native species of temperate origin were more numerous and showed unimodal elevational distribution, while species of tropical origin were few and decreased linearly with elevation. We conclude that in a tropical highland mountain range, native and non‐native plant species respond differently to elevation: native species exhibit a monotonically linear decrease, and non‐native species show a unimodal trend. Disturbance positively affects non‐native species showing higher richness and fewer species turnover. In addition, the non‐native species are located along of the elevational gradient in relation to their biogeographic origin.  相似文献   

19.
The native fauna of isolated island systems is generally unique with acute conservation issues. For spiders in Hawaii, the first impediment to effective conservation is lack of taxonomic knowledge. The primary conservation concerns are related to the highly localized areas of endemicity of many species, with associated small population sizes. Species on insular systems tend to occur naturally in small populations, and small population size itself may not be a cause for conservation concern. However, for spiders and other arthropods, which tend to have shorter generation times compared to vertebrates, population fluctuations will tend to be more frequent, rendering them more vulnerable to extinction through demographic accidents at small population size. The knowledge we have to date suggests that habitat disturbance and alien species invasion are probably the major factors affecting native spiders in the islands. For a given natural community, the ability of species to accommodate habitat perturbation may be related more to the novelty of the perturbation than to its apparent severity. Although native spiders appear to tolerate disruption of the species composition of the native vegetation, evidence suggests that they are severely impacted by alien arthropod predators, in particular social hymenoptera, a group not represented among native Hawaiian arthropods.  相似文献   

20.
Biological homogenization is defined as a process that occurs when native species are replaced by common and dominant exotic species or due to depletion and expansion of native species, reducing the beta diversity between areas or habitats. Islands are particularly vulnerable to plant invasion, and as a consequence, homogenization is a process that can become faster and more intense in islands than in continental areas. We recorded vascular plant species composition in roadside communities along a strong altitudinal gradient using plots beside the road and at two distances from the road (0–50 and 50–100 m). We analyzed the results separately for each group of plots with a Detrended Correspondence Analysis (DCA) including and excluding exotic species. The results revealed that where exotic species were most abundant, i.e., at the road edge, they can create an effect of floristic homogenization where three similar roads are compared. At a distance of >50 m from the road, where exotic species are less frequent, this effect has already disappeared, indicating that it is a local phenomenon, closely related to the highly disturbed roadside environment. Furthermore, floristic homogenization seems to be more important at higher altitudes (>1000 m), probably related to higher diversity in native plant communities and lower levels of human disturbances. Roads allow humans to reach relatively remote and sometimes well-conserved areas, and, at the same time, facilitate the spread of exotic plants and the most common native species which can locally create floristic homogenization in roadside communities on this oceanic island. A deeper understanding of the effects of these anthropogenic corridors at the local and regional scales is therefore required to integrate road planning and management with the aim of conserving the value of the natural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号