首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
Cultured monolayers of dog kidney (MDCK) cells display many features of in vivo epithelia. This work describes the identification of two separate strains of MDCK cell with entirely different properties. Strain I cells form epithelial monolayers which display a high electrical resistance (4.1 k omega . cm-2); the basal short-circuit is small (approx. 0.5 muamp . cm-2) and is stimulated by adrenaline (1 micrometer) prostaglandin E1 (1 micrometer) and arginine vasopressin (2 micrometer) added to the basal bathing solution. Strain II cells form epithelial monolayers of low electrical resistance; the short circuit current is insensitive to adrenaline, prostaglandin E1 and vasopressin. Strain II cells possess measurable activities of alkaline phosphatase and gamma-glutamyl transpeptidase whereas Strain I cells do not. The specific activity of the (Na+ + K+)-ATPase is two-fold greater in Strain II compared with Strain I. The polypeptide composition of the apical membrane differs substantially between the two cell strains as revealed by radio-iodination of external membrane proteins. Monolayer morphology is substantially different between two cell strains. The results are discussed in relation to previous work on MDCK epithelial and the two types of cell monolayer compared with in vivo tubule segments.  相似文献   

2.
The role of protein kinase C (PKC) in the regulation of the cytoskeleton of epithelial cells with tightly sealed contacts, poor contacts, and without contacts were investigated by incubating them with a protein kinase C activator phorbol myristoyl acetate (PMA). The morphology and organization of the membrane skeleton and stress fibers as well as the localization of an actin-bundling PKC substrate MARCKS in confluent MDCK cells originating from the distal tubulus of dog kidney, LLC-PK1 cells originating from the proximal tubulus of pig kidney, src-transformed MDCK cells, epidermoid carcinoma A431 cells, and MDCK cells grown in low calcium medium (LC medium) in low density were visualized with phase contrast and immunofluorescence microscopy. Four different responses to the PMA-treatment in actin-based structures of cultured epithelial cells were observed: 1) disintegration of the membrane skeleton in confluent MDCK cells; 2) depolymerization of the stress fibers in confluent MDCK and LLC-PK1 cells; 3) formation of the membrane skeleton in A431 cells, and 4) formation of the stress fibers and membrane skeleton in LC-MDCK cells. Thus, it seems that in fully confluent tightly sealed epithelium, activation of PKC has a deleterious effect on actin-based structures, whereas in cells without contacts or loose contacts, activation of PKC by PMA results in improvement of actin-based cytoskeletal structures. The main difference between the two kidney cell lines used is their selectivity to ion transport: the monolayer of LLC-PK1 cells is anion selective and MDCK cells cation selective. We propose a model where alterations in the ionic milieu within the MDCK cells by means of cation channels affect the disintegration of the membrane skeleton. The distribution of MARCKS followed the distribution of fodrin in both cell lines upon PMA-treatment, suggesting that phosphorylation of MARCKS by PKC may contribute in the regulation of the integrity of the membrane skeleton. J. Cell. Physiol. 181:83–95, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Although it is well established that epidermal growth factor receptors (EGFRs) are asymmetrically expressed at the basolateral plasma membrane in polarized epithelial cells, how this process is regulated is not known. The purpose of this study was to address the mechanism of directed EGFR basolateral sorting using the Madin-Darby canine kidney (MDCK) cell model. The first set of experiments established sorting patterns for endogenous canine EGFRs. The polarity of the canine EGFR was not quantitatively affected by differences in electrical resistance exhibited by the MDCK I and MDCK II cell strains. In both cases, greater than 90% of total surface EGFRs was localized to the basolateral surface. Canine EGFRs sort directly to the basolateral membrane from the trans-Golgi network with a halftime of approximately 45 min and have an approximate t1/2 of 12.5 h once reaching the basolateral surface. Human holoreceptors expressed in stably transfected MDCK cells also localize to the basolateral membrane with similar efficiency. To identify EGFR sequences necessary for basolateral sorting, MDCK cells were transfected with cDNAs coding for cytoplasmically truncated human receptor proteins. Human EGFRs truncated at Arg-651 were localized predominantly at the apical surface of filter-grown cells, whereas receptors truncated at Leu-723 were predominantly basolateral. These results suggest that the cytoplasmic juxtamembrane domain contains a positive basolateral sorting determinant. Moreover, the EGFR ectodomain or transmembrane domain may possess a cryptic sequence that specifically interacts with the apical sorting machinery once the dominant basolateral sorting signal is removed. Further elucidation of the precise loacation of these signals will enhance our basic understanding of regulated plasma membrane sorting, as well as the functional consequences of inappropriate EGFR expression associated with certain pathophysiologic and malignant states. © 1995 Wiley-Liss, Inc.  相似文献   

4.
5.
目的通过对重症监护病房(Intensive Care Unit,ICU)内脑膜脓毒金黄杆菌(Chryseobacterium meningosepticum)医院感染的临床特征和耐药性调查分析,为临床更好地预防和治疗该细菌所引起的感染提供参考。方法对我院2007年1月至2008年12月重症监护病房脑膜脓毒金黄杆菌医院感染的47例患者进行回顾性调查。结果45例(95.7%)患者均有严重的基础疾病,与感染相关的因素还包括侵入性操作、深静脉置管、环境污染及长期广谱抗菌药物的应用;47株脑膜脓毒金黄杆菌全部检测出金属β-内酰胺酶,具多重耐药性。体外抗菌活性较好的抗菌药物依次为万古霉素(100.0%)、头孢哌酮/舒巴坦(83.0%)、哌拉西林/他唑巴坦(57.1%)、替卡西林/克拉维酸(52.4%)和复方新诺明(45.2%),其余所检测的抗菌药物体外抗菌活性均在6.4%-0。结论缩短住院时间、加强病区环境和空气监控、尽量减少侵入性操作和合理使用抗生素是减少脑膜脓毒金黄杆菌感染发生的重要措施。治疗脑膜脓毒金黄杆菌,可选用万古霉素、头孢哌酮/舒巴坦、哌拉西林/他唑巴坦、替卡西林/克拉维酸和复方新诺明。  相似文献   

6.
Natural and synthetic polycationic proteins, such as protamine, have been used to reproduce the tissue injury and changes in epithelial permeability caused by positively charged substances released by polymorphonuclear cells during inflammation. Protamine has diverse and often conflicting effects on epithelial permeability. The effects of this polycation on the distribution and expression of tight junction (TJ)-associated proteins have not yet been investigated. In this work, we examined the influence of protamine on paracellular barrier function and TJ structure using two strains of the epithelial Madin-Darby canine kidney (MDCK) cell line that differed in their TJ properties ("tight" TJ-strain I and "leaky" TJ-strain II). Protamine induced concentration-, time- and strain-dependent alterations in transepithelial electrical resistance (Rt) only when applied to apical or apical+basolateral monolayer surfaces, indicating a polarity of action. In MDCK II cells, protamine (50 microg/ml) caused a significant increase in Rt that returned to control values after 2 h. However, the treatment of this MDCK strain with a higher concentration of protamine (250 microg/ml) significantly decreased the Rt after 30 min. In contrast, treated MDCK I monolayers showed a significant decrease in Rt after apical treatment with protamine at both concentrations. The protamine-induced decrease in Rt was paralleled by an increase in the phenol red basal-to-apical flux in both MDCK strains, suggesting disruption of the paracellular barrier. Marked changes in cytoskeletal F-actin distribution/polymerization and a significant reduction in the junctional expression of the tight junctional proteins occludin and claudin-1 but subtle alterations in ZO-1 were observed following protamine-elicited paracellular barrier disruption. In conclusion, protamine induces alterations in the epithelial barrier function of MDCK monolayers that may involve the cytoskeleton and TJ-associated proteins. The various actions of protamine on epithelial function may reflect different degrees of interaction of protamine with the plasma membrane and different intracellular processes triggered by this polycation.  相似文献   

7.
Escherichia coli strains causing urinary tract infections in dogs produce fimbriae composed of fimbrial subunits closely related to the F12 and F13 fimbriae of human uropathogenic strains [4]. The adhesins carried by the fimbriae of human and canine isolates differ, however, as concluded from a different hemagglutination pattern and from the fact that the dog strains do not agglutinate latex beads coated with P-fimbriae receptor. This possible difference in adhesive specificity was confirmed by experiments in which the adhesion of human and dog isolates to dog kidney epithelial cells (MDCK cells) and human bladder epithelial cells (T24 cells) was compared. Dog uropathogenic strains, in contrast to human uropathogenicE. coli strains, adhere to MDCK cells but hardly to T24 cells. Adhesion to MDCK cells correlates with the presence of F12 or F13 fimbriae on the dog strains. These results suggest that homologous fimbrial subunits can carry different adhesin molecules and that these adhesin molecules can be responsible for species-specific adherence. On the contrary, adhesion of a number of dog uropathogenicProteus mirabilis strains to MDCK and T24 cells was not species specific; it depended on the mere presence of fimbriae.  相似文献   

8.
We have observed that cells of various epithelial lines exhibit the ability to migrate through permeable membrane substrates containing 3.0 microns pores. Scanning and transmission electron microscopic observations of Vero C1008 and Caco-2 cell lines grown on polycarbonate membranes containing 3.0 microns pores revealed extensive penetration of the filter and the establishment of virtually complete monolayers on the opposing surface. The migration of MDCK cells was also observed to occur under the same conditions; however, the extent of MDCK cell growth on the opposing surface was significantly less than observed for Vero C1008 and Caco-2 cells. Morphological differences were apparent between cells growing on the upper and lower faces of the filter membrane, although cells growing on both surfaces exhibited a polarized phenotype. The cells which invaded the filter were collected and maintained by serial passage. The passaged cells exhibited morphological differences and an altered rate of differentiation in comparison to the parental cell type, suggesting that the invasive cells represent a variant of the parental cell population. Studies using filters of different pore sizes indicated that cellular migration also occurs through pores of 2.0 microns diameter, but not through 1.0 micron (or smaller) pores. These observations have significant implications for studies involving the growth of epithelial cells on permeable membrane substrates containing large pores.  相似文献   

9.
Using monoclonal antibodies directed against the plasma membrane of Madin-Darby canine kidney (MDCK) cells, we demonstrated previously that a glycoprotein with an Mr = 23,000 (gp23) had a non-polarized cell surface distribution and was observed on both the apical and basolateral membranes (Ojakian, G. K., Romain, R. E., and Herz, R. E. (1987) Am. J. Physiol. 253, C433-C443). However, in parallel studies on MDCK clonal lines (D11, D18) with high transepithelial electrical resistances and in kidney cells in vivo it was determined that gp23 had a polarized cell surface distribution, being localized only to the basolateral membrane. The cell surface distribution of other glycoproteins was identical in both MDCK and MDCK clonal lines, indicating that MDCK cells were not deficient in the ability to properly sort membrane glycoproteins. Metabolic labeling with radioactive substrates followed by immunopurification and gel electrophoresis demonstrated that gp23 from both MDCK and MDCK clone D11 had many biochemical similarities including electrophoretic mobility, glycosylation, and palmitate incorporation. However, proteolytic digestion of gp23 from MDCK and clone D11 cells produced unique peptide maps suggesting that these closely related glycoproteins may have different primary sequences. In this report, we present evidence that the differential targeting of gp23 may be due to differences between the primary sequences of the basolateral and non-targeted proteins. The possibility that the observed differences in gp23 targeting are due to the presence of a basolateral recognition signal in gp23 from clone D11 cells is discussed.  相似文献   

10.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

11.
The MDCK cell line provides a tractable model for studying protein trafficking, polarity and junctions (tight, adherens, desmosome and gap) in epithelial cells. However, there are many different strains of MDCK cells available, including the parental line, MDCK I, MDCK II, MDCK.1, MDCK.2, superdome and supertube, making it difficult for new researchers to decide which strain to use. Furthermore, there is often inadequate reporting of strain types and where cells were obtained from in the literature. This review aims to provide new researchers with a guide to the different MDCK strains and a directory of where they can be obtained. We also hope to encourage experienced researchers to report the stain and origin of their MDCK cells.  相似文献   

12.
Structural bases of the cytolytic mechanisms of Entamoeba histolytica   总被引:6,自引:0,他引:6  
The cellular bases of the powerful cytolytic activity of the human protozoan parasite Entamoeba histolytica were explored by studying the effect of the virulent strain HM1:IMSS on epithelial monolayers of MDCK cells using a combination of time-lapse microcinematography and transmission and scanning electron microscopy. Early alterations of the epithelial cell membranes were detected by measuring changes in the transepithelial electrical resistance of MDCK monolayers mounted in Ussing chambers. The aggressive mechanism of E. histolytica trophozoites was found to be a complex, multifactorial phenomenon that included hit-and-run damage to the plasma membrane of effector cells mediated through contact, phagocytosis of lysed or apparently intact, but detached, MDCK cells, and intracellular degradation of ingested cells. Following contact with amebas, the epithelial monolayers showed a pronounced lowering of transepithelial resistance, opening of tight junctions, distortion of microvilli, surface blebbing, and the presence of minute focal discontinuities in the plasma membrane. There was no evidence of amebic exocytosis, membrane fusion, or junction formation between the parasite and host plasma membranes. Although modifications in the epithelial cell membranes usually preceded lysis, the cytolytic activity of the parasite did not exclusively involve damage to the plasma membrane of the cultured host cells but also was mediated by avid phagocytosis, the displacement and separation of neighboring cells by means of pseudopodial activity, and the "pinching-off" of the peripheral cytoplasm of epithelial cells.  相似文献   

13.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   

14.
We have used a retroviral vector containing both the cDNA for rabbit neutral endopeptidase (EC 3.4.24.11; NEP) and the neomycin resistance gene to promote the expression of NEP in a polarized Madin-Darby canine kidney (MDCK) cell line. Cells resistant to G418 (a neomycin synthetic analog) were analyzed with a fluorescence-activated cell sorter to isolate a homogeneous population of cells which stably expressed NEP at their surface. When cells grown in Petri dishes were labeled with an antibody to NEP coupled to colloidal gold and examined under the electron microscope, a strong labeling of microvilli was observed, whereas very few particles were present on the basolateral domain, suggesting that the polarized distribution of this enzyme typical of proximal tubule cells is maintained in this MDCK cell population. To study more accurately the mechanism by which MDCK cells target NEP to the apical surface, cultures were grown to confluence on Costar Transwell chambers and used for pulse-chase experiments with [35S]methionine. Immunoprecipitation of recombinant NEP was then performed by adding an anti-NEP polyclonal antibody to the apical or basolateral surface of intact monolayers and by analyzing immunoprecipitates by gel electrophoresis and fluorography. Our results suggest that NEP is delivered directly to the apical domain and does not transit through the basolateral domain of the plasma membrane. This NEP-expressing MDCK cell line therefore constitutes a new model for investigating the molecular basis of apical membrane targeting in polarized epithelial cells.  相似文献   

15.
Confluent monolayers of MDCK (Madin-Darby canine kidney) cells provide a widely used model system for studying epithelial cell polarity. We determined the polarity of epithelial cell plasma membrane glycolipids and sulfated lipids by analyzing the lipids released from both sides of monolayers of metabolically labeled MDCK cells. These lipids were released either as endogenously shed material or in budding viruses. All of the glycolipids were detected in both the apical and basolateral domains of the plasma membrane. However, galactosylceramide was more basally oriented than any of the other glycolipids; thus, the ratio of glucosylceramide to galactosylceramide was more than twice as great in the apical domain as in the basolateral domain. A sulfated sterol, which comigrated with cholesterol sulfate, was released in a more basally polarized manner than any of the glycolipids. These results indicate the presence of mechanisms which can produce different degrees of polarity for specific lipids in polarized epithelial cells.  相似文献   

16.
Influenza virus and vesicular stomatitis virus (VSV) obtain their lipid envelope by budding through the plasma membrane of infected cells. When monolayers of Madin-Darby canine kidney (MDCK) cells, a polarized epithelial cell line, are infected with fowl plague virus (FPV), an avian influenza virus, or with VSV, new FPV buds through the apical plasma membrane whereas VSV progeny is formed by budding through the basolateral plasma membrane. FPV and VSV were isolated from MDCK host cells prelabeled with [32P]orthophosphate and their phospholipid compositions were compared. Infection was carried out at 31 degrees C to delay cytopathic effects of the virus infection, which lead to depolarization of the cell surface. 32P-labeled FPV was isolated from the culture medium, whereas 32P-labeled VSV was released from below the cell monolayer by scraping the cells from the culture dish 8 h after infection. At this time little VSV was found in the culture medium, indicating that the cells were still polarized. The phospholipid composition of the two viruses was distinctly different. FPV was enriched in phosphatidylethanolamine and phosphatidylserine and VSV in phosphatidylcholine, sphingomyelin, and phosphatidylinositol. When MDCK cells were trypsinized after infection and replated, non-infected control cells attached to reform a confluent monolayer within 4 h, whereas infected cells remained in suspension. FPV and VSV could be isolated from the cells in suspension and under these conditions the phospholipid composition of the two viruses was very similar. We conclude that the two viruses obtain their lipids from the plasma membrane in the same way and that the different phospholipid compositions of the viruses from polarized cells reflect differences in the phospholipid composition of the two plasma membrane domains.  相似文献   

17.
We investigated whether or not polarized renal epithelial cells produce antibacterial factors, which aid in host defense at the cell surface of renal epithelium. A model of polarized Madin-Darby canine kidney (MDCK) epithelial cells grown on filters was used to test for the presence of apically or basolaterally secreted factors on the growth of non-virulent (XL1-Blue) and uropathogenic (J96) strains of Escherichia coli (E. coli). Growth of both XL1-Blue and J96 strains of E. coli in medium on the apical and basolateral surface of MDCK cells was inhibited as compared to bacterial growth in medium not exposed to MDCK cells. The inhibition of bacterial growth was similar in both apical and basolateral surface medium. Pretreatment of MDCK cells with hepatocyte growth factor (HGF) blunted the inhibition of XL1-Blue and J96 growth in apical and basolateral surface medium as compared to growth in medium on the surfaces of untreated MDCK cells. Immunofluorescent analysis demonstrated the presence of beta-defensin isoforms 1-3 in MDCK cells, with isoform 1 being the most prevalent form observed. HGF treatment reduced the amount of immunoreactive beta-defensin-1 in MDCK cells. These data demonstrate that polarized renal epithelium produce antibacterial factors. The renotropic growth factor HGF inhibits these antibacterial factors. beta-defensins may contribute to this antibacterial activity and play an important role in renal epithelial resistance to bacterial infections.  相似文献   

18.
Ankyrin-G (AnkG) coordinates protein composition of diverse membrane domains, including epithelial lateral membranes and neuronal axon initial segments. However, how AnkG itself localizes to these membrane domains is not understood. We report that AnkG remains on the plasma membrane in Madin-Darby canine kidney (MDCK) cells grown in low calcium, although these cells lack apical-basal polarity and exhibit loss of plasma membrane association of AnkG partners, E-cadherin and β2-spectrin. We subsequently demonstrate using mutagenesis and mass spectrometry that AnkG is S-palmitoylated exclusively at Cys-70, which is located in a loop of the first ankyrin repeat and is conserved in the vertebrate ankyrin family. Moreover, C70A mutation abolishes membrane association of 190-kDa AnkG in MDCK cells grown in low calcium. C70A 190-kDa AnkG fails to restore biogenesis of epithelial lateral membranes in MDCK cells depleted of endogenous AnkG. In addition, C70A 270-kDa AnkG fails to cluster at the axon initial segment of AnkG-depleted cultured hippocampal neurons and fails to recruit neurofascin as well as voltage-gated sodium channels. These effects of C70A mutation combined with evidence for its S-palmitoylation are consistent with a requirement of palmitoylation for targeting and function of AnkG in membrane domain biogenesis at epithelial lateral membranes and neuronal axon initial segments.  相似文献   

19.
The main objective of this study was to compare the adherence properties of four Pseudomonas fluorescens isolates from different ecological niches (human tissue, rhizosphere, drinking water, and cow milk). The substrates used to test P. fluorescens adherence were as follows: cultured human respiratory epithelial cells A549, immobilized plant fibronectin-like protein, and polystyrene. For all the experiments, bacteria were grown at 27 degrees C. The adherence assay to human cells was performed at 37 degrees C, whereas adherence to fibronectin and polystyrene was done at 27 degrees C. The four strains tested adhered to A549 cells but showed different adherence patterns. At 3 h, the milk isolate showed an aggregative adherence phenotype, whereas the three other isolates showed a diffuse adherence pattern. With a longer incubation time of 24 h, the aggregative pattern of the milk isolate disappeared, the adherence of the clinical strain increased, the adherence of the water isolate decreased, and morphological changes in A549 cells were observed with the clinical, water, and soil isolates. The four strains tested formed biofilms on polystyrene dishes. The clinical and milk isolates were the more efficient colonizers of polystyrene surfaces and also the more adherent to immobilized plant fibronectin-like protein. There was no relation between bacterial surface hydrophobicity and P. fluorescens adherence to the substrates tested. The main conclusions of these results are that P. fluorescens is an adherent bacterium, that no clear correlation exists between adherence and ecological habitat, and that P. fluorescens can adhere well to substrates not present in its natural environment.  相似文献   

20.
Many intracellular parasites are capable of penetrating host epithelial barriers. To study this process in more detail we examined the interactions between the pathogenic bacteria Salmonella choleraesuis and polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells grown on membrane filters. Association of bacteria with the MDCK cell apical surface was an active event, requiring bacterial RNA and protein synthesis, and was blocked by low temperatures. Salmonella were internalized within a membrane-bound vacuole and exhibited penetration through, but not between MDCK cells. A maximum of 14 Salmonella per MDCK cell crossed the monolayer per hour to the basolateral surface yet the monolayer remained viable and impermeable to Escherichia coli. Apical S. choleraesuis infection resulted in an increase in paracellular permeability but the MDCK intercellular contacts were not significantly disrupted. Basolateral S. choleraesuis infection was inefficient, and only small numbers of S. choleraesuis penetrated to the apical medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号